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Carbon dioxide rebreathing in respiratory protective devices; influence of speech 

and work rate in full face masks 

 

Carbon dioxide (CO2) rebreathing has been recognised as a concern regarding respirator use 

and is related to symptoms of discomfort, fatigue, dizziness, headache, muscular weakness 

and drowsiness.  Previous investigations are limited by small sample size and have not 

evaluated the relationship between CO2 inhalation and phonic respiration (breathing during 

speech) in respiratory protective devices (RPDs).  A total of 40 workers trained in the use of 

RPDs performed a graded exercise test on a cycle ergonometer that increased in workload 

every five minutes.  During the third minute of each stage participants read aloud a prepared 

text.  Measures of mixed expired CO2 (PECO2) mixed inspired CO2 (PICO2), and respiration 

were monitored.  The results showed phonic respiration and low work rates contributed to 

significantly higher levels of CO2 rebreathing.  Aiming to reduce CO2 exposure may result in 

improved wear time of RPDs.  It is recommended that these findings be incorporated in 

technical specifications regarding human factors for RPDs.   

 

Practitioner Summary:  Carbon dioxide (CO2) rebreathing in respiratory protective devices 

(RPDs) has been highlighted as key concern regarding respirator use.  However the problem 

is relatively under researched.  This paper presents novel findings on the impact of phonic 

respiration (breathing during speech) and CO2 concentrations in RPDs.  

 

Keywords: carbon dioxide rebreathing; phonic respiration; speech; respiratory 

protective devices 

  



1. Introduction 

Many researchers have been interested in determining the physiological impact of the use of 

respiratory protective devices (RPDs) in human wearers.  In recent times carbon dioxide 

(CO2) rebreathing in RPDs has been highlighted as a key concern regarding respirator use.  

Rebreathing can occur if expired air, which is CO2 rich, remains in the breathing space of the 

respirator after each breath.  This can increase arterial CO2 concentrations which can generate 

symptoms of discomfort, fatigue, dizziness, headache, shortness of breath, muscular 

weakness and drowsiness (Kloos and Lamonica 1966).   

It is known that dead space (respirator volume) and hypoventilation related to 

breathing resistance in RPDs can contribute to CO2 rebreathing.  The effects of exercise, 

duration of respirator use, breathing technique, individual sensitivity to CO2 and susceptibility 

to claustrophobia can also influence CO2 rebreathing (ISO/TS 16976-3: 2011). 

The impact of phonic respiration, or breathing during speech, on CO2 levels in RPDs 

has not previously been evaluated.  Phonic respiration occurs during exhalation and as a 

result decreases inhalation time (ISO/TS 16976-1: 2007).  According to Boron and Boulpaep 

(2005) following the cessation of speech, breathing rate can increase by 25% and alveolar 

CO2 (PACO2) falls.  Doust and Patrick (1981) proposed that hypercapnia could explain the 

above increase in respiration observed at the end of speech.  To our knowledge no researchers 

have focused on the influence of speech on CO2 concentrations in RPDs. 

Therefore, the present study aimed to evaluate if speech and exercise workload had an 

impact on CO2 levels in RPDs.  In addition the CO2 values will be compared to current 

respirator design standards.  It was anticipated that speech, gender, body size and workload 

(exercise intensity) would influence CO2 concentrations within RPDs.  This research will lead 

to a better understanding of the physiological response to respirator use.   



The study was conducted in two parts: a pilot study conducted at the University of 

Wollongong and a field study carried out at a refinery in Mount Isa, Queensland.  This report 

outlines the results of the field study.  

2. Methods 

2.1.  Participants 

The study was approved by the Human Research Ethics Committee of the University of 

Wollongong/South Eastern Sydney and Illawarra Area Health Service (Reference Number: 

HE11/437).  A total of 46 participants (one female) familiar with the use of RPDs, 

volunteered for the field study.  Before taking part, all details of the study were explained and 

informed written consent was obtained from participants.   

Prior to participation, participants completed a Physical Activity Readiness 

Questionnaire (PAR-Q) which is a self administered survey that screens individual’s 

cardiovascular disease risk factors and symptoms (PAR-Q 2002).  The State-Trait Anxiety 

Inventory (STAI) that assesses participants “state” and “trait” anxiety symptoms (Spielberger 

et al. 1983) was also administered.  Participants were excluded if pregnant, suffering from 

severe illness or injury, obtained an STAI score at the ninetieth percentile or above, reported 

problems with claustrophobia or unable to obtain a satisfactory face fit with the RPD.  In 

addition participants were required to be clean shaven, avoid exercise and smoking cigarettes 

or cigars on the day of testing.    

Of this sample six participants did not meet the selection criteria for inclusion into the 

study, leaving a total of 40 participants (one female).  The ages ranged from 19 to 58, with a 

mean age of 35 (SE = ±1.50).  The majority of these participants were non-smokers (n=32) 

and 55% (n=22) reported that they were physically active or exercised on a regular basis.  



Information on the participants characteristics are provided in Table 1.   

2.2. Equipment 

A quantitative respirator fit test with a calibrated TSI Portacount Plus (TSI Incorporated; 

Shoreview, MN, USA) was performed to ensure that the RPD achieved an adequate face seal 

on the wearer.  The TSI Portacount Plus uses a technique known as condensation nuclei 

counting (CNC) (TSI 2012).  This involves the measurement of the particle concentrations 

outside the mask and inside the mask.  The ratio of these two values is the RPD fit factor.  

Participants were required to obtain an overall fit factor of greater than 500 to be included in 

the study.  This constraint was important to ensure leakage factors would not limit the results.  

The TSI Portacount was pre-programmed with eight sixty second exercises contained in the 

Occupational Safety and Health Administration (OSHA) regulations regarding quantitative fit 

testing protocols for RPDs (OSHA 2011).  This included the following test exercises normal 

breathing, deep breathing, turning head side to side, up and down head movement, talking out 

loud, grimace (smile or frown), bending over and normal breathing. 

A schematic diagram of the apparatus utilised for the exercise test is provided in 

Figure 1.  The RPD donned was a large full face S.E.A Pty Ltd Respirator with side-mounted 

filter (SEA Full Face Mask-SMF-L, The S.E.A Group; Warriewood, New South Wales, 

Australia).  The RPD was fitted with a Sundstrom SR P510-310 P3 particle filter on one side 

and a modular test adaptor on the other.  The full face RPD was worn as shown in Figure 2. 

The modular test adaptor consisted of a pressure probe which monitored inhalation 

and exhalation pressures.  This was attached to a Validyne Pressure Transducer (Model 

P55D, Validyne Engineering Corporation; Northridge, California, USA).  To allow for the 

measurement of peak inspiratory air flow (PIAF) the probe was designed to measure pressure 

drop in combination with the standard Sundstrom SR 510 P3 particulate filter (accuracy 

±0.25% FS).  The Validyne Pressure Transducer was calibrated before the assessment dates. 



Two gas sampling lines were also installed in the modular test adaptor.  The two gas 

sampling lines consisted of pneumatic valves (V1, V2).  V1 and V2 (see Figure 1) were 

controlled to operate as one way valves and collected inspired and expired gas samples within 

the oronasal cup.  The two sampling lines were connected externally to inhalation and 

exhalation accumulators.  Downstream valves (V3, V4) opened one at a time, thereby 

isolating expired and inspired air samples during measurement.  A shut off valve (V5) was 

used to purge the system before sampling began.   

Analysis of CO2 concentration in mixed expired and mixed inspired air samples was 

measured via an O2 and CO2 analyser (O2Cap, Oxigraph; Mountain View, USA) single 

channel (5-100% O2; 0-10% CO2 range).  The analyser obtained air samples with a flow rate 

of 250 mL·min-1.  The unit was calibrated at regular intervals during test procedures using 

certified calibration gas bottles (0% CO2 and 5% CO2).  A Data Acquisition (DAQ) system 

was connected to a personal computer (PC) and collected data with 50 samples per second 

rate.  The DAQ system performed data monitoring (such as pressure/ flow, valve control and 

CO2 management) and data storage for further analysis. 

The exercise test was performed on a stationary cycle ergonometer (Monark 

Bodyguard AB; Varberg, Sweden).  The cycle ergonometer was calibrated before the 

assessment dates.  Participants heart rate was measured throughout the exercise test using a 

Polar heart rate monitor (Polar FT1, Polar Electro; Kempele, Finland).  The Modified Borg 

Scale (MBS) was used to measure participant’s subjective level of dyspnoea (breathing 

discomfort).  The MBS is a visual analogue scale which allows participants to rate their level 

of breathlessness from 0 (Nothing at all) to 10 (Maximal) accessed from the Australian Lung 

Foundation (2011).  Scores of seven or greater (very severe) were considered termination 

criteria for the assessment.   



The recorded outcome parameters included percentage of mixed inspired CO2 

(PICO2), percentage of mixed expired CO2 (PECO2), heart rate (HR), respiratory frequency 

( ோ݂), peak inspiratory air flow (PIAF), dyspnoea (MBS) and rate of oxygen uptake ( ሶܸ O2).  

ሶܸ O2 was estimated using the leg cycling equation suggested by the American College of 

Sports Medicine (ACSM 2006).  

ሶܸ O2 (mL·kg-1·min-1) = 1.8 (work rate)/(BM) + Resting ሶܸ O2 ( 3.5 mL·kg-1·min-1) + Unloaded 

cycling (3.5 mL·kg-1·min-1) 

Where work rate is in kg·m·min-1 and BM is body mass in kg.  PIAF, ோ݂, PICO2 and PECO2 

were calculated by averaging the data during 30 seconds of each measurement period (speech 

and no speech).  The variables presented in this article were calculated across all six 

workloads (rest, 75 W, 100 W, 125 W, 150 W and 175 W) and the two breathing conditions 

(speech and no speech).  Measurements of flow rates were corrected to body temperature, 

pressure and saturated (BTPS). 

2.3.  Test procedures 

Exercise tests were carried out in an air-conditioned room maintained at an ambient 

temperature of 24° C, with an average relative humidity of 40%.  Participants completed a 

graded exercise test on a cycle ergonometer wearing the full face S.E.A respirator.  Ahead of 

the exercise test beginning participants sat on the cycle ergonometer for approximately five 

minutes while the apparatus was calibrated and resting data was collected.  The test began 

with a two minute warm up at 50 W and a pedal rate of 60 revolutions per minute (rpm).  The 

starting workload was 75 W or 100 W depending on the participants body size, gender or 

estimated fitness.  The exercise protocol required a constant pedal speed of 60 rpm and 

increases in workload by 25 W every five minutes or after a steady state HR was reached 

(two heart rates within 5 beats·min-1).  During the third minute of exercise participants read 



from a prepared text.  Talking was discouraged during the periods before and after speech.  

During minute two (no speech) and minute three (speech) of each stage gas analysis and 

measurement of the physiological parameters (HR, MBS, PIAF) was conducted.   

All participants could voluntarily halt the assessment process at any time.  The test was 

terminated after four stages, volitional fatigue, a rating of dyspnoea of seven or greater or 

when the participant reached 85% of their age-predicted maximal HR (220-age).  

Immediately after exercise all participants were asked if they experienced any symptoms of 

CO2 exposure, such as headache, blurred vision or dizziness.  Additionally participants were 

allowed an active recovery period of two to five minutes (low load pedalling).  The same 

RPD was used for each procedure.  After each test the RPD was thoroughly cleaned and 

disinfected. 

2.4.  Statistical analysis 

The physiological data were calculated for both breathing conditions (speech and no speech) 

across six workloads (Rest, 75 W, 100 W, 125 W, 150 W and 175 W).  The effects of 

speaking and non speaking conditions on differences in PICO2 and PIAF at each workload 

were analysed using multiple paired sample t-tests.  Linear mixed model analysis with 

Bonferroni test for post-hoc analysis was conducted to determine the significance of the 

effects of ሶܸ O2 and the experimental conditions, speech and no speech, on PICO2.  A 

significance level of p< 0.05 (two tailed) was used for all statistical analysis.  All analyses 

were completed using Statistical Package for the Social Sciences (SPSS) version 19. 

3. Results 

Of the 46 volunteers, 13% (n=6) did not meet the selection criteria for inclusion into the 

study.  Five participants were excluded from participation at the level of the PAR-Q form and 



one due to equipment failure.  All participants passed a quantitative respirator fit test (>500 

protection factor) with a Portacount.  Data for the remaining 40 participants who completed 

all phases of the test are presented in Table 2. 

The duration of the exercise test, including warm up varied from 8-22 minutes.  Within 

this, 12 participants (30%) did not reach 85% of their age-predicted maximal HR.  Reasons to 

stop the exercise test before target HR was reached included lower limb fatigue (n=6), end of 

exercise protocol (n=3), severe breathing discomfort or dyspnoea (n=2) and general fatigue 

(n=1).   

3.1.  Speech (phonic respiration) 

The mean PICO2 values that occurred during periods of speech and no speech for both rest 

and exercise are shown in Table 3.  Paired t tests were carried out to compare differences in 

PICO2 between the two conditions.  A significant difference in PICO2 between periods of 

speech and no speech occurred at rest, 75 W, 100 W, 125 W and 150 W.  Although there was 

a relationship at 175 W, it did not achieve significance.   

In general PICO2 levels were below 2% in periods without speech.  However during 

speech, PICO2 was observed to often exceed this, above all at rest.  An elevation of PICO2 

above 3% (100 times atmospheric concentrations) was experienced by three participants at 

rest (speech).  One in three participants (n=11) were exposed to PICO2 greater than 2% 

during periods of work and speech (75 W, 100 W and 125 W).  In the absence of speech 

PICO2 concentrations were observed to decrease, especially with each increase in workload.  

The lowest average PICO2 (0.97%) occurred at a mean ሶܸ O2 of 28.7 mL·kg·min-1, no speech.  

No participants reported symptoms of headache, blurred vision or dizziness.  



3.2. Peak inspiratory air flow 

The mean PIAF for all workloads during periods of speech and no speech is displayed in 

Table 4.  A paired samples t test was conducted to compare PIAF and the two breathing 

conditions (no speech and speech) across the six exercise workloads (rest, 75 W, 100 W, 125 

W, 150 W and 175 W) (alpha was set at 0.05).  There was a significant difference in PIAF 

between periods of speech and no speech at rest, 75 W, 100 W, 125 W and 175 W.  Although 

there was a relationship at 150 W, it did not achieve significance.   

The highest PIAF scores were seen during speech.  The maximum mean PIAF was 

323.50 L·min-1 and occurred at 175 W during speech, whereas the lowest mean PIAF was 

80.50 L·min-1 occurred at rest and during no speech.   

3.3.Oxygen uptake  

The mean PICO2 levels as a function of mean ሶܸ O2 during speaking and non speaking periods 

is displayed in Figure 3.  The highest mean ergonometer power setting equivalent to ሶܸ O2 33.2 

mL·kg-1·min-1 gave rise to PICO2 of 1.0% (no speech) and 1.4% (speech).  It appears with 

increased ሶܸ O2, the RPD is more efficient in the removal of dead space CO2.   

Linear mixed model analysis was conducted to assess the effects of ሶܸ O2 and the 

experimental conditions, speech and no speech on PICO2.  There were five levels of ሶܸ O2 

corresponding to the following groups: rest (n=40), 75 W (n=19), 100 W (n=40), 125 W 

(n=36) and 150 W (n=22).  Note that 175 W was not tested due to unsatisfactory sample size.  

Statistical significance was set at an alpha level of 0.05.  

Without speech, the effect of ሶܸ O2 on PICO2 was significant, F (1, 4) = 19.8, p=0.00. 

Similarly, interactions between speech and ሶܸ O2 had significant effects on PICO2, F (1, 4) = 

25.7, p = 0.00.  Post-hoc tests were conducted to examine all pairwise contrasts using the 

Bonferroni adjustment.  Since this involved five pairwise contrasts for each workload 



(excluding 175 W due to small sample size) the critical alpha level to be used for these 

contrasts was 1/5 times 0.05, that is, a critical  of 0.2.  Of the five contrasts without speech, 

level one (rest) differed significantly from all others and level 5 (150 W) differed 

significantly from level 1 (rest) and level 3 (100 W).  However, level 2 (75 W) did not differ 

significantly from 3 (100 W) or 4 (125 W) (p<0.05).  Similarly during speech, level one (rest) 

differed significantly from all others.  Level 3 (100 W) did not differ from level 2 (75 W), 

level 4 (125 W) and level 5 (150 W).  This reflects that CO2 rebreathing is reduced once a 

higher ሶܸ O2 is obtained with exercise.  However the difference between PICO2 vs. small 

increments in ሶܸ O2 with exercise is less significant.   

3.4.  Effects of mixed expired carbon dioxide 

On average PECO2 appeared to be higher during periods without speech.  The highest mean 

PECO2 was 5.8% and occurred at 75 W (speech) and 100 W (no speech).   However the 

lowest mean PECO2 was 2.9% and occurred at rest (speech).   

3.5.  Dyspnoea 

Dyspnoea (MBS) scores during speech and no speech periods are shown in Table 2.  No 

dyspnoea was reported during resting conditions.  Ratings of dyspnoea was reported to be 

somewhat severe (4) or higher by 92% (n=12) of participants at 150 W (speech) and 100% 

(n=3) at 175 W (speech).  Breathing discomfort was reported to rise during both increases in 

exercise effort and periods of speech.  Due to the opposing effects of these variables on 

PICO2 the relationship between PICO2 and dyspnoea did not produce a significant result in 

this study.   

3.6. Heart rate  

HR was on average 2.9% higher during speech conditions than no speech at the same 



workload.  Therefore speech appears to increase the work of breathing (energy expenditure).  

This effect appeared to decrease as workload increased (175 W excluded).   

3.7.  Breathing frequency 

Overall, there was a reduction in mean ோ݂ during speech.  During speech ோ݂ decreased by 

23.5% at rest.  However progressive increases in exercise workloads caused participants to 

speak fewer words from the text and ோ݂ gradually increased.  Consequently ோ݂ during speech 

and non speech periods at 175 W (peak exercise) was comparable.  

4. Discussion 

Increased levels of CO2 rebreathing in RPDs can have a profound effect on the respiratory 

system and is a concern regarding respirator use (ISO/TS 16976-3: 2011).  A literature 

review by NIOSH (1976) indicates 1% inspired CO2 is associated with respiratory stimulation 

such as increased ோ݂, alveolar CO2 and ሶܸ O2.  This current study demonstrates that periods of 

speech in RPDs cause an increase in inspired CO2 well above the normal concentration found 

in atmospheric air (0.03%) (Williams 2010).  Almost one in three participants inspired CO2 

concentrations 2% or higher during periods of speech at sedentary to low work rates.  These 

findings suggest prolonged speech can contribute to CO2 surpassing current respirator design 

standards that specify inspired CO2 should not exceed 1% for more than one consecutive 

minute when testing RPDs (AS/NZS 1716: 2003).  This specification is also applied in the 

Occupational Safety and Health Standards of OSHA: 1910.134 “Respiratory Protection” and 

European Standards: EN 13274-6: 2002 for respirator classification.   

Similarly, Roberge et al. (2010) examined the physiological impact of N95 filtering 

face piece respirators.  Ten adults (seven women) conducted two 60 minute treadmill 

assessments at very low workloads walking at 2.74 km·hr-1 (1.7 miles·hr-1) and 4.02 km·hr-1 

(2.5 miles·hr-1) while wearing the RPD.  Data collected showed that dead-space CO2 ranged 



from 2.5-3.5% CO2 which is significantly above OSHA’s ambient workplace standards.  

Roberge et al. (2010) concluded that even though the RPD did not impose any significant 

physiological burden on participants, CO2 retention was a possibility due to elevated 

transcutaneous CO2 (equivalent to arterial CO2) levels.  On a similar note, although no 

symptoms of CO2 retention were recorded in this study, the increases in CO2 during speech 

were sufficient enough to impact the participant.   

There has also been concern that exercise compounds CO2 rebreathing in RPDs due to 

increased metabolic CO2 production (Williams 2010).  In the current study PICO2 was shown 

to be inversely related to exercise.  This demonstrated that the large full face S.E.A Pty Ltd 

Respirator was efficient in the removal of dead space CO2 at higher work rates.  These 

findings support research conducted by Kloos and Lamonica (1966) and Luria et al. (2004) 

who found low work rates during RPD use was associated with CO2 accumulation.  A 

previous study by Luria et al. (2004) attributed this to a rise in ventilation and lower dead 

space during higher exercise efforts.   

We also noted that breathing frequency and positive pressure in the mask decreased 

each time speech was added.  This also suggests speech produces a reduction alveolar 

respiration without a change in metabolic rate which tends to increase CO2 concentrations in 

RPDs (ISO/TS 16976-3:2011). 

The International Organization for Standardization (ISO) prepared a technical report 

on the effects of hypercapnia and the impact of CO2 concentrations on respirator use (ISO/TC 

16976-3.2: 2010).  ISO (2010) specified that increased concentrations of CO2 in the breathing 

space of a RPD may generate dyspnoea which causes the user to remove the device.  ISO 

(2010) concluded that aiming to reduce CO2 exposure in the breathing space of a RPD is 

important to improve the wear time of RPDs in the workplace.  The results of the present 

study indicate the impact of speech, low work rates and respirator use needs to be evaluated.  



We suggest that the findings in this study be incorporated in technical specifications 

regarding human factors for RPDs.   

Sensitivity to CO2 is a variable that may have confounded the effects of CO2 

rebreathing in the present study.  It should be acknowledged that the level of response to CO2 

rebreathing varies considerably from person to person.  For instance research by Love et al. 

(1979) and Takahashi et al. (2000) found when CO2 was added to inspired air all participants 

increased their respiration but the degree of this response varied considerably.   

There was a small increase in HR noted during speech.  These effects demonstrate 

that there is an increase in physical exertion during speech and RPD use.  Therefore speech 

may limit physical performance while wearing RPDs.   

In this study, the process of speaking and exercise was enough to cause symptoms of 

breathing discomfort.  Therefore the present study could not attribute any physiological 

symptoms of dyspnoea to CO2 rebreathing.   

Also, participants were more likely to pause from speaking at higher workloads due to 

the breathing requirements required for exercise.  This would improve oxygen delivery to the 

participant wearing the RPD and decrease the level of CO2 rebreathing.  This can potential 

confound the results.   

It is also important to note exercise intensities in this study were only set at low to 

moderate workloads.  Therefore differences in PICO2 during maximal exercise, where CO2 

production can exceed 4 L·min-1 (ISO 16976-3: 2010) cannot be compared and limits the 

interpretation of these results. 

A further limitation of the study was the underrepresentation of women and small-

medium body surface area (BSA) groups.  Differences in gender and BSA might influence 

CO2 production and sensitivity to CO2 exposure.  Future research could overcome this by 

analysing women and different BSA groups separately. 



5. Conclusion 

Overall, the results of the study indicate speech and low work rates significantly increase CO2 

rebreathing in RPDs.  Based on Australian respirator design standards it is evident speech 

could contribute to inspired CO2 exceeding the maximal allowable concentrations in inspired 

air.  However, the impact of gender and body size on CO2 levels could not be ascertained.  

The implication of these findings is that high CO2 concentrations in full face RPDs may be 

linked to wearer discomfort and contribute to reduced tolerability and wear time of the 

device.  Since many occupations require workers to communicate while wearing RPDs these 

findings must be taken into consideration.  It is recommended that the findings in this study 

be considered in the design and use of RPDs.   
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Table 1.  Characteristics of the field study participants 

 Median Min Max 

Age (years) 34 19 58 

Weight (kg) 89.5 58.0 128.0

Height (m) 1.77 1.67 1.92 

BSA (m2) 2.09 1.67 2.41 

State Anxiety Score (%) 27 20 50 

Trait Anxiety Score (%) 30.5 20 47 

  

  



 

 
 

Table 2.  Effects of speech on respiratory parameters during rest and exercise wearing a full face respiratory protective device 
 Rest 

(n=40) 

75 Watts 

(n=19) 

100 Watts 

(n=40) 

125 Watts 

(n=36) 

150 Watt 

(n=22) 

175 Watts 

(n=4) 

No Speech 

 

Speech No Speech Speech No Speech Speech No Speech Speech No Speech Speech No Speech Speech 

 M SE M SE M SE M SE M SE M SE M SE M SE M SE M SE M SE M SE 

PICO2  

(%) 
 

1.5 0.06 2.1* 0.08 1.2 0.03 1.5* 0.06 1.2 0.04 1.6* 0.06 1.1 0.03 1.5* 0.06 1.0 0.03 1.4* 0.05 1.0 0.04 1.4 0.03 

PECO2  

(%) 
 

3.9 0.06 3.8 0.07 4.8 0.07 4.7 0.09 4.8 0.08 4.6 0.07 4.8 0.69 4.6 0.08 4.6 0.07 4.4 0.12 4.7 0.05 4.6 0.04 

HR  
(beat·min-1) 

 

82 1.95 84 2.25 112 2.43 116 2.60 121 2.09 125 2.50 134 2.17 137 2.17 144 1.58 146 1.59 150 1.46 157 1.50 

ோ݂ 
(breaths·min-1) 
 

17 0.78 13 0.62 21 0.73 18 0.69 22 0.96 19 0.80 25 0.77 21 0.71 26 0.96 24 0.75 26 0.66 26 0.61 

ሶܸ O2 (mL·kg-1·min-1) 
 

7.0 0 - - 18.8 0.24 - - 21.6 0.35 - - 25.3 0.44 - - 28.7 0.53 - - 33.2 0.63 - - 

PIAF ** 
(L·min-1) 
 

80.50 2.51 125.75* 4.87 150.00 2.37 225.00* 4.56 172.75 3.24 247.25* 4.30 201.50 3.16 268.75* 4.07 232.25 4.88 305.25 5.62 227.75 5.03 323.50* 7.34 

MBS  
(0-10) 

0 0.11 0.5 0.12 1 0.19 2.5 0.23 2 0.18 3 0.15 3 0.17 4 0.17 4 0.21 4.5 0.18 3 0.08 5 0.10 

M, Mean, SE, Standard Error of the Mean, PICO2, Percentage of Inspired Carbon Dioxide, PECO2, Percentage of Expired Carbon Dioxide, HR, Heart Rate,  

ோ݂, Breathing Frequency, PIAF, Peak Inspiratory Air Flow , MBS, Modified Borg Dyspnoea Scale, BTPS, Body Temperature & Pressure Saturated. Note. 
*=Statistical significance (p≤0.05) from paired samples t-test  **PIAF is given in BTPS and rounded to the nearest 0.25. 



 

Table 3.  Mean carbon dioxide inspired at rest and exercise for conditions of no speech and 
speech 

 No Speech Speech  
 M SE M SE t df 

Rest 1.5 0.06 2.1* 0.08 7.75 38 
75 W 1.2 0.03 1.5* 0.06 6.07 18 
100 W 1.2 0.04 1.6* 0.06 6.07 35 
125 W 1.1 0.03 1.5* 0.06 6.57 33 
150 W 1.0 0.03 1.4* 0.05 4.90 11 
175 W 1.0 0.04 1.4 0.03 2.93 3 

M, Mean, SE, Standard Error of the Mean.  Note. *=Statistical significance (p≤0.05) from paired samples t-
test.  
 
 
 
  



 

Table 4.  Mean peak inspiratory air flow at rest and exercise for conditions of no speech and 
speech 

 No Speech Speech  
 M SE M SE t df 

Rest 80.50 2.51 125.75* 4.87 2.85 39 
75 W 150.00 2.37 225.00* 4.56 5.27 34 
100 W 172.75 3.24 247.25* 4.30 4.14 39 
125 W 201.50 3.16 268.75* 4.07 4.47 39 
150 W 232.25 4.88 305.25 5.62 2.05 39 
175 W 227.75 5.03 323.50* 7.34 1.78 39 

M, Mean, SE, Standard Error of the Mean.  Note. *=Statistical significance (p≤0.05) from paired samples t-test  
.  
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