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Lentiviral vector genomic RNA requires sequences that
partially overlap wild-type HIV-1 gag and env genes for pack-
aging into vector particles. These HIV-1 packaging sequences
constitute 19.6% of the wild-type HIV-1 genome and contain
functional cis elements that potentially compromise clinical
safety. Here, we describe the development of a novel lentiviral
vector (LTR1) with a unique genomic structure designed to
prevent transfer of HIV-1 packaging sequences to patient cells,
thus reducing the total HIV-1 content to just 4.8% of the wild-
type genome. This has been achieved by reconfiguring the
vector to mediate reverse-transcription with a single strand
transfer, instead of the usual two, and in which HIV-1 pack-
aging sequences are not copied. We show that LTR1 vectors
offer improved safety in their resistance to remobilization in
HIV-1 particles and reduced frequency of splicing into human
genes. Following intravenous luciferase vector administration
to neonatal mice, LTR1 sustained a higher level of liver trans-
gene expression than an equivalent dose of a standard lenti-
virus. LTR1 vectors produce reverse-transcription products
earlier and start to express transgenes significantly quicker
than standard lentiviruses after transduction. Finally, we
show that LTR1 is an effective lentiviral gene therapy vector
as demonstrated by correction of a mouse hemophilia B model.

INTRODUCTION
The Retroviridae family of viruses was first investigated as vectors for
mammalian gene transfer over 30 years ago, and this technology con-
tinues to develop.1,2 The current generations of lentiviral vectors are
based on HIV type 1 (HIV-1),3–6 in which the vector RNA must
contain a significant portion of the wild-type HIV-1 genome to enable
successful packaging into virus particles.

The HIV-1 elements that must be present in lentiviral vectors include
the RNA packaging signal (J), the major splice donor, and the Rev-
response element (RRE), which are implicated in vector RNA pro-
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cessing and packaging into viral particles.7–10 During viral particle
assembly, the nucleocapsid protein recognizes and binds to J to
ensure that RNA is encapsidated by the budding virion.11,12 The
RRE interacts with the HIV-1 Rev protein to stabilize transcripts
and promote RNA export from the nucleus.13–18

Following transduction of target cells, the RNA genome in a standard
lentiviral vector is reverse-transcribed to form a double-stranded
DNA (dsDNA) provirus. The HIV-1 long terminal repeats (LTRs)
mark the boundaries of the reverse-transcribed template; thus, J
and RRE are always incorporated into standard lentiviral vector pro-
viruses and integrated into the host cell genome as they are situated
between the LTRs.

The persistence of HIV-1-derived elements in target cells presents a
risk for clinical translation of lentiviral technology due to potential in-
teractions between virus and patient genomes. The J and RRE por-
tions of lentiviral vector DNA contain functional cis elements, such as
the major splice donor, which can disrupt cellular processes in patient
cells. For example, it has been shown that integrated lentiviral provi-
ruses can upregulate the human growth hormone receptor due to in-
teractions between the HIV-1 major splice donor and splice acceptors
in the human growth hormone receptor gene.19 Additionally, it has
been observed that splice acceptors in lentiviral vector packaging se-
quences can splice with patient genes to create aberrant fusion tran-
scripts.20 This was recently observed in a gene therapy clinical trial for
b-thalassemia in which splicing between the patient HMGA2 gene
(s).
tivecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ymthe.2017.04.028
mailto:j.counsell@ucl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymthe.2017.04.028&domain=pdf
http://creativecommons.org/licenses/by/4.0/


www.moleculartherapy.org
and an integrated lentiviral provirus caused dysregulation of HMGA2
transcription and a large clonal expansion of a transduced cell.21 The
presence of the J packaging element in vector proviruses presents
further problems by enabling remobilization of proviral transcripts
in HIV-1-infected cells.22–24 Provirus remobilization in HIV-1- in-
fected patients has been cited as a primary safety concern in the clin-
ical use of lentiviral vectors.25,26 If standard lentiviruses were used in
HIV-positive patients, there is a possible risk of lentiviral vector pro-
viruses being remobilized by HIV factors supplied in trans and for
potential recombination events with wild-type HIV-1 genomes.
Furthermore, any transgene cassette remobilized in HIV-1 particles
could be transferred to any newly infected individuals.

Previous attempts to remove J and RRE from lentiviral vector pro-
viruses have been largely unsuccessful. Cui et al.27 attempted to
further truncate the J and RRE sequences in the lentiviral vector
genome in efforts to minimize the transfer of HIV-1 DNA. This
resulted in aberrant splicing of the vector genome in HEK293T pro-
ducer cells and functional vector propagation was found to be depen-
dent on the use of an unconventional TE671 rhabdomyosarcoma pro-
ducer cell line. Delviks et al.28 attempted to exploit homologous
recombination events that occur during viral reverse-transcription
to “skip” the vector packaging signal during provirus synthesis,
although this technique operated with limited efficiency as skipping
did not always occur. More recently, Cre-loxP mediated deletion of
the J and RRE sequences was used to markedly reduce the preva-
lence of these sequences in transduced cells, although again, the level
of efficiency was limited by the efficiency of recombination and Cre
expression in target cells may be undesirable or unfeasible in clinical
applications.29 These investigations exemplify the technical chal-
lenges that complicate the removal of HIV-1 packaging sequences
from clinical-grade vectors.

Here, we describe the development and initial application of a novel
lentiviral vector, LTR1, in which the HIV-1 packaging sequences have
been relocated to avoid their transfer into target cell nuclei. In LTR1
vector RNA, the HIV-1J and RRE packaging sequences are located
downstream of a single self-inactivating LTR (sin.LTR).5 This posi-
tioning ensures that the necessary HIV-1 structures are present for
efficient RNA packaging and processing in producer cells, but absent
from the delivered provirus due to their exclusion from reverse-tran-
scription. As a result, LTR1 proviruses contain just 441 bp of the wild-
type HIV-1 genome, which is limited to the vector LTRs, primer
binding site, and polypurine tracts. We have iteratively optimized
the structure of LTR1 to achieve high titers for in vivo gene therapy
applications, and we have investigated LTR1 gene transfer both
in vitro and in vivo to compare this system to standard lentiviral
technology.

RESULTS
Optimization of LTR1 Genome to Achieve Vector Titers

Sufficient for Gene Therapy

The premise of LTR1 technology is to generate an RNA genome that
mimics the first strand that is synthesized during the initial stages of
reverse-transcription in target cells (known as the “minus strand”).
This is achieved in LTR1 vectors by removing the vector 50LTR, thus
leaving the HIV-1 primer binding site at the extreme 50 terminus of
the vector RNA. An additional primer binding site is situated immedi-
ately downstream of a solitary self-inactivating LTR (DU3 SIN),5 fol-
lowed by the necessary packaging sequences. The location of primer
binding site immediately downstream of the LTR ensures the necessary
proximity of the upstream primer activation signal, which is present
within the LTR U5 region, thus guaranteeing efficient initiation of
reverse-transcription.30,31 The LTR1 design means that reverse-tran-
scription moves from two essential strand transfer events to just one,
thus shortening the virus life-cycle. A schematic for the expectedmech-
anism of LTR1 reverse-transcription is detailed in Figure S1, and the
expected RNA and DNA products are displayed in Figure 1.

During iterative LTR1 development, vector transduction efficiency
was determined by flow cytometry, by delivering GFP and the
woodchuck-hepatitis virus post-transcriptional regulatory element
(WPRE), driven by either the human phosphoglycerate kinase
(PGK) promoter, or human glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) promoter. The first iteration of LTR1 was
produced by editing a third generation pRRL-PGK-EGFP-WPRE
lentiviral plasmid (RRL-PEW),4 for which the primer binding
site and J-RRE packaging sequences were moved to a new loca-
tion between the 30sin.LTR and early simian virus 40 polyadeny-
lation sequence (SV40 polyA) (Figure 2A). This vector, termed
LTR1.0-PGK-EGFP-WPRE (LTR.1.0-PEW), gave an infectious,
EGFP titer of 1.2 � 105 transducing units per milliliter (TU/
mL) following concentration by ultracentrifugation, almost three
orders of magnitude lower than the standard RRL-PEW vector
(3.4 � 108 TU/mL; data not shown), as determined by flow cyto-
metric quantification of EGFP expression in transduced 293T cells
(Figure 2B).

To increase LTR1 titers to a level suitable for gene therapy applications,
the LTR1 genomic structure was progressively optimized with the goal
of obtaining yields similar to the original third generation lentivirus
from which LTR1 was developed (Figure 2A). Two major bottlenecks
to producing high titer vector were believed to be insufficient nuclear
export of vector RNA and undesirable transcription termination in the
30sin.LTR. The majority of the optimization steps were designed to
tackle these restrictions. The initial modifications that improved vector
titers included exchanging the SV40 early polyA for the SV40 late
polyA for improved polyadenylation (LTR1.5-PEW), use of the cyto-
megalovirus (CMV) promoter to increase expression of vector
genomic RNA in producer cells (LTR1.7.671-GEW), and insertion
of a small chimeric intron into the vector 50 UTR with the intention
of increasing nuclear export (LTR1.20-GEW).32 The GAPDH
promoter was introduced during development of LTR1.7.671-GEW,
as we observed patchy EGFP fluorescence in producer cells when using
the PGK promoter (data not shown).

Full-length LTR1 and CCL vector RNAwould be expected to produce
a 4 kb transcript, when all packaging elements are incorporated.
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Figure 1. The Structure of LTR1 Gives Rise to RNA and DNA Products that Are Distinct from CCL

CCL and LTR1 plasmid genomes (top row) are both driven by a CMV promoter to produce ssRNA vector genomic transcripts in producer cells (second row). CCL genomic

transcripts are flanked by the HIV-1 R region at their extreme termini, whereas LTR1 is rearranged, so that the transcript contains a primer binding site (PBS) at its extreme 50

terminus and an additional primer binding site adjacent to a solitary self-inactivating LTR, with HIV-1 packaging sequences (J-RRE is highlighted in red boxes) situated

downstream of both primer binding site sequences. This means that reverse-transcription initiates upstream ofJ-RRE, and these sequences are not converted into double-

stranded DNA. The result is that LTR1 products are devoid of J-RRE and are thus smaller than CCL products.
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However, northern blotting of vector RNA derived from LTR1.7.671
and LTR1.20 producer cells showed a strong band at approximately
1.7 kb when third generation packaging plasmids (without Tat
expression) were used, while the wild-type CCL-GEW sample gave
the expected 4 kb band at a greater frequency (Figure S2). Co-trans-
fection with pcDNA3.Tat during vector production was able to rescue
the 4 kb band in northern blotted LTR1.7.671-GEW and LTR1.20-
GEW genomic RNA, indicating that efficient processing of LTR1
vector RNA during vector production is relatively dependent on the
presence of HIV-1 Tat in producer cells. For this reason, Tat was
included during the production of all LTR1 and CCL vectors for
the remainder of the experiments.

The close proximity of the CMV enhancer to the internal GAPDH
promoter in pLTR1.20-GEW and pLTR1.7.671-GEW may have
strengthened the activity of this internal GAPDHpromoter in producer
cells, thus resulting in some vector transcripts being initiated from the
GAPDH promoter itself (rather than CMV) and consequentially
missing important upstream elements (primer binding site and
cPPT). To combat potential CMV enhancement of the internal
GAPDHpromoter, we introduced larger introns in the 50 UTR to effec-
tively add space between the two promoters. Insertion of a truncated
b-globin intron (LTR1.25-GEW) or an elongation factor 1 a intron
(LTR1.27-GEW) was successful in increasing the functional titer (p =
0.004 by Kruskal-Wallis comparison of all vector titers) (Figure 2B).
At this stage, LTR1.27 titers can be produced with efficiency equivalent
to approximately 35% of a standard lentiviral vector (pCCL) titer.

LTR1 Proviruses Are Devoid of HIV-1 Packaging Sequences

The absence of HIV-1 packaging sequences from the delivered provi-
rus is fundamental to the benefits of LTR1 technology. To confirm
1792 Molecular Therapy Vol. 25 No 8 August 2017
that the packaging signal is not copied during reverse-transcription,
two methods were used to sequence LTR1-derived DNA proviruses
in transduced cell lines.

Initially, a PCR was carried out using genomic DNA harvested from
HT1080 cells transduced with an LTR1.20 vector containing EGFP
expressed by the spleen focus-forming virus promoter (SFFV)
(LTR1.20-SFFV-EGFP). The PCR was designed to amplify the region
spanning from the 50LTR-primer binding site junction up to the R
component of the 30LTR. Resolution of the PCR product by agarose
gel electrophoresis showed that LTR1.20 products were approxi-
mately 2.4 kb, which matched the expected size of products lacking
HIV-1 packaging sequences (Figure S3). This confirmed that
LTR1.20-SFFV-EGFP products are indeed smaller than those derived
from CCL-SFFV-EGFP, with an estimated provirus size difference of
1.3 kb. The sequence composition of the PCR products was confirmed
by Sanger sequencing, which matched the expected provirus struc-
tures (data not shown).

A “plasmid rescue” method33 was also implemented to confirm
the structure of LTR1 product by enabling recovery and direct
sequencing of integrated proviruses from transduced HEK293T cells.
In this process, the pBR322 bacterial origin of replication and selec-
tion marker were relocated to the transgene region of the pLTR1.20
plasmid to allow propagation of the provirus products in competent
bacteria, following provirus recovery from transduced mammalian
cells (Figure S4). Sequencing of LTR1.20-rescue proviruses confirmed
that the expected provirus structure, with J and RRE removed, was
present in transduced cells, and these products had successfully inte-
grated into the cell genome with expected dinucleotide repeats
(Figure S5).
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Figure 2. Key Stages of the LTR1 Development Process

(A) LTR1 genomes were developed based on the pRRL-PGK-EGFP (pRRL-PEW) or pCCL-GAPDH-EGFP (pCCL-GEW) third generation lentiviral plasmids. pLTR1.0 was

made by transferring the pRRL packaging sequences downstream of the 30 self-inactivating LTR. pLTR1.5 introduced the late SV40 polyA site (SV40LpA) in place of the early

SV40 polyA site (SV40EpA). pLTR1.7.671 replaced the viral RSV promoter with the CMV promoter. pLTR1.11.1 was designed to investigate the influence of minus-strand

exchange, with the 50LTR components returned to the genome. This was directly comparedwith pLTR1.13.0, which was similar to pLTR1.11.1, but lacked a 50LTR and had a

primer binding site returned to the 30 end, to remove minus-strand exchange. pLTR1.20 introduced a 133 bp chimeric intron to mimic the effects of HIV-1 splice sites.

pLTR1.25 and pLTR1.27 were designed to further improve titers by examining the influence of the 476 bp human b-globin intron and the 939 bp human elongation factor 1

alpha (EF1a) intron upstream of the GAPDH promoter. RSV, Rous sarcoma virus promoter; RU5, R and U5 components of HIV-1 LTR; primer binding site, HIV-1 primer

binding site; J, HIV-1 packaging signal; MSD, HIV-1 major splice donor; DGag, truncated and inactive HIV-1 gag gene; RRE, HIV-1; cPPT, central polypurine tract; PGK,

human phosphoglycerate kinase promoter; WPRE, woodchuck-hepatitis virus post-transcriptional regulatory element; PPT, polypurine tract; SIN LTR, self-inactivating

30LTR; DIS, HIV-1 dimer initiation sequence; GAPDH, human glyceraldehyde-3-phosphate dehydrogenase promoter; pCi intron, chimera between introns from human

b-globin and immunoglobulin heavy chain genes; b-globin intron, internally truncated intron from human b-globin; EF1a intron, intron upstream of human EF1a start codon.

(B) Progressive titer increases through LTR1 development process. Stepwise optimization of the LTR1 backbone gradually increased the functional titers from 0.04% of

standard third generation levels to the current level of 35% (p = 0.004 by Kruskal-Wallis comparison of all titers). All titers are based on functional EGFP output, and LTR1

titrations were performed in parallel with a wild-type third generation vector. LTR1 iterations driven by the RSV viral promoter and PGK internal promoter (LTR1.0 and LTR1.5)

were compared to pRRL-PEW titers, while all subsequent LTR1 titers were compared to pCCL-GEW. The bars represent mean values with the error bars showing SEM.

www.moleculartherapy.org

Molecular Therapy Vol. 25 No 8 August 2017 1793

http://www.moleculartherapy.org


Table 1. Characterization of LTR1 and CCL Vector Composition by Various Titration Methods

Vector RNA Titer Particle Titer Provirus Titer EGFP Titer
Reverse Transcription
Efficiency (%)

Expression
Efficiency (%) Packaging Efficiency (%)

CCL 1.35 � 1011 ssRNAvg/mL 1.68 � 1011 lp/mL 2.23 � 1010 dsDNAvg/mL 1.62 � 1010 TU/mL 33.04 72.80 80.21

LTR1.20 2.24 � 1011 ssRNAvg/mL 2.60 � 1011 lp/mL 1.84 � 108 dsDNAvg/mL 1.09 � 108 TU/mL 0.16 58.96 86.32

ssRNAvg/mL, ssRNA vector genomes per mL; lp/mL, lentiviral particles per mL; dsDNAvg/mL, dsDNA vector genome proviruses yielded per mL; TU/mL, EGFP-forming
TU/mL.

Molecular Therapy
LTR1 Transduction Characteristics Compared to Third

Generation CCL In Vitro

In vitro experiments were carried out to further characterize LTR1
vectors and compare them to a third generation lentiviral vector.
For these investigations, we used vectors containing an SFFV-
driven bicistronic luciferase-EGFP reporter gene in which luciferase
and EGFP are separated by a T2A cleavage peptide (SFFV-Luc-
T2A-EGFP).34 HT1080 cells were transduced with a range of
LTR1.20-SFFV-Luc-T2A-EGFP or CCL-SFFV-Luc-T2A-EGFP
doses. At 2 weeks after transduction, EGFP expression was
analyzed by flow cytometry and vector copy numbers (VCNs)
were quantified by qPCR titration of the genomic DNA. Lentiviral
titers were determined by p24 ELISA (lp/mL), qRT-PCR of pack-
aged single-stranded RNA genomes (ssRNAvg/mL), qPCR analysis
of integrated dsDNA vector genome proviruses (dsDNAvg/mL),
and flow cytometric quantification of EGFP-positive cells (TU/
mL) (Table 1).

The data in Table 1 show that, while LTR1.20-GEW particle and
RNA genome titers are similar to CCL, the provirus titer and
EGFP titer appear to be restricted. We further analyzed these pa-
rameters by calculating the approximate efficiency of key steps in
the viral life-cycle. The relative packaging efficiency was calculated
by expressing the RNA titer as a percentage of the particle titer,
while the transgene expression efficiency was based on the EGFP
titer as a percentage of the provirus titer. The efficiency of LTR1
packaging (86.3%) and transgene expression (59.0%) was similar
to CCL (80.2% and 72.8%). Reverse-transcription efficiency was
calculated by expressing the provirus titer as a percentage of the
RNA genome titer. This value showed that LTR1.20 (0.16%) was
less efficient than CCL (33.04%) at converting its RNA genome
into a stable provirus.

The similarities and differences between LTR1.20 and CCL vector
parameters are shown in more detail in Figure 3. Plotting the in-
tegrated VCN versus the mean fluorescence intensity (MFI) of
EGFP expression (Figure 3A) shows that transgene expression
efficiency per LTR1.20 provirus matches the level derived from
the CCL vector. However, when plotting the p24 and RNA
genome doses versus the percentage of GFP-positive cells (Figures
3B and 3C), it becomes apparent that LTR1.20 requires a greater
total particle number and RNA dose than CCL to achieve an
equivalent effect, underlining the potential inefficiency during
transduction.
1794 Molecular Therapy Vol. 25 No 8 August 2017
LTR1 Proviruses Are Resistant to Remobilization in the

Presence of HIV-1 Packaging Components Provided in trans

Despite self-inactivating lentiviruses lacking an active promoter in the
50LTR,5 it has been reported that lentivirus-transduced cells can still
produce full-length RNA genomes that are remobilized in new virions
when host cells are actively producing HIV-1 components.22,23

Possible remobilization of gene therapy vectors in patients infected
with HIV presents significant safety and regulatory concerns.25,26

We hypothesized that the absence of HIV-1 packaging sequences
from LTR1 proviruses would confer resistance to re-packaging of
any full-length RNA in target cells where HIV-1-based packaging
components were provided in trans.

To investigate this, we transducedHEK293T cells with a 2-fold dilution
series of LTR1.20-SFFV-EGFP or CCL-SFFV-EGFP and maintained
the populations in culture for 11 days. Genomic DNA was harvested
from each transduced population for VCN quantification, and the
remaining cells were plated out and transfected with lentiviral pack-
aging plasmids to create a pool of mock-HIV-1-infected cells. Vector
supernatants were subsequently harvested and purified prior to
addition to HT1080 cells, which were analyzed at 10 days post-trans-
duction to quantify any expression from functional vector particles
with the ability to deliver stably integrated remobilized viral genomes
(Figure 4).

LTR1.20 samples were completely devoid of any remobilized provi-
ruses, revealed by the lack of EGFP expression at all VCN doses.
Third generation lentivirus (CCL) samples were positive for
EGFP expression, with remobilized titers calculated in the range of
5.9 � 102–1.5 � 104 TU/mL, where area under the curve (AUC)
increased in correlation with the starting VCN (p = 0.0004 by
t test) (Figure 4A).

Three example flow cytometry dot plots show clear EGFP-positive
colonies produced by a CCL-derived vector (Figure S6) remobilized
from a HEK293T population possessing a CCL VCN of 2.03 vector
genomes per cell. LTR1.20 was not remobilized from HEK293T cells
containing 3.75 genomes per cell, with plots indistinguishable from a
non-transduced negative controls.

The Risk of Generating Vector Host-Fusion Transcripts Is

Reduced with LTR1 Technology

Transcripts derived from lentiviral vector proviruses have been
shown to fuse with neighboring gene transcripts in patient cells
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(A) Plotting the integrated vector copy number versus the mean fluorescence in-

tensity (MFI) of EGFP expression in HT1080 cells 2 weeks after transduction shows

that expression intensity from transgenes delivered by LTR1.20-SFFV-Luc-T2A-

EGFP (red lines, cross markers) or a third generation CCL vector (blue lines, circular

markers) are equivalent per integrated provirus. (B) When comparing the percent-

age of GFP positive cells versus the vector dose according to gag p24 mass, it

becomes apparent that LTR1.20 vectors require a higher particle dose to match the

CCL level of efficacy in vitro. (C) Further to this, when plotting the level of GFP

positive cells versus the total vector dose in terms of RNA genomes, we see that a

greater number of LTR1 genomes are required to match the CCL level of

transduction.
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through splicing interactions between HIV-1 splice sites and the
human genome.19–21 This constitutes a safety risk for clinical
gene therapy. We hypothesized that the absence of a HIV-1 major
splice donor and J-RRE splice acceptors from LTR1 vector
proviruses would influence the frequency of vector-host fusion
transcripts, so we performed a basic analysis of cellular fusion
transcripts.

HEK293T cells were transduced with CCL-GEW, LTR1.7.671-GEW,
or LTR1.20-GEW at a range of doses and expanded for 14 days to
deplete any unintegrated proviruses. VCNs were calculated by
qPCR (3.43 for CCL, 2.82 for LTR1.7.671, and 3.62 for LTR1.20). To-
tal RNA was extracted from transduced cells and ribosomal RNA was
depleted prior to preparation of next-generation sequencing libraries.
Sequencing reads were analyzed for fusion transcripts by mapping
paired reads to the human genome and subsequently to the relevant
vector provirus, to find the frequency of human-vector transcript
chimera per human genomic transcript. The number of fusion tran-
scripts per 106 human transcripts was then normalized to the dsDNA
provirus copy number in each sample.

The fusion transcript frequency detected in CCL samples (0.54 ±

0.06) was significantly greater than LTR1.7.671 samples (0.07 ±

0.02) and LTR1.20 samples (0.14 ± 0.02) (p = 0.027 by Kruskal-Wallis
test) (Figure 4B). These values were also expressed relative to the
number of CCL fusion transcripts, to highlight the reduced frequency
of splice fusions when using LTR1.7.671 (12.97 ± 5.64% of CCL level)
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and LTR1.20 (26.5 ± 0.86% of CCL level) (p = 0.024 by Kruskal-
Wallis test) (Figure 4C).

LTR1 Vectors Can Exceed Standard Lentiviral Vector Efficacy in

the Liver following Murine Neonatal Intravenous Injection of

Titer-Matched Viruses

To confirm that expression from an LTR1 provirus was detectable
in vivo, LTR1.20-SFFV-EGFP (titer 2.34 � 107 TU/mL) was pro-
duced and administered intracranially or intravenously to newborn
CD1 mice (Figure 5). Examination of EGFP expression 1 week after
vector administration demonstrated that LTR1 could efficiently
deliver transgene expression to mouse liver and brain (Figure 5A).
Immunostaining of dissected brains demonstrated that stable EGFP
expression existed predominantly within the cortex and hippocam-
pus of the injected hemisphere (Figure 5B).

To compare longitudinal LTR1-driven in vivo expression to a CCL
vector, the SFFV-Luc-T2A-EGFP bicistronic construct was used to
allow bioluminescence imaging. Equivalent volumes of lentiviral
vectors (LTR1.20 titer of 2.0 � 107 TU/mL and CCL titer of
3.6 � 107 TU/mL) were administered either intracranially or intra-
venously to newborn CD1 mice, which were then monitored for
36 days.

In vivo LTR1.20-SFFV-Luc-T2A-EGFP bioluminescence imaging
revealed that the brain expression profiles of LTR1.20 did
not show a statistically significant difference to CCL vectors
(p = 0.087) (Figure 5C). However, comparison of luciferase
expression in the livers of intravenously injected animals showed
a significantly higher bioluminescent output from LTR1 vectors
over the 36 day period (p = 0.018) (Figure 5D). The bio-
distribution and intensity of luciferase expression is shown in
representative images at 0, 5, 15, and 36 days post-administration
in Figure S7.

The Onset of Transgene Expression from LTR1 Vectors Occurs

Earlier than Third Generation Lentiviral Vectors

An interesting observation was made when imaging the SFFV-Luc-
T2A-EGFP animals immediately after vector administration. At just
20 min post-injection, luciferase expression was detectable in all
LTR1.20-treated animals, but not in animals injected with third gen-
eration CCL vectors (Figure 6A).

In light of this finding, we sought to profile the timing of
LTR1-derived expression during the initial stages after trans-
duction. HT1080 cells were transduced at a MOI of 1 with
LTR1.11.1-GEW, LTR1.13.0-GEW, or CCL-GEW (vector sche-
matics can be found in Figure 2A). Flow cytometric analysis dur-
ing the initial 48 hr after transduction revealed that the percentage
of EGFP-positive cells derived from the LTR1.13.0 backbone was
already at 8% just 1 hr after transduction, increasing at each sub-
sequent time point (Figure 6B). Expression from the LTR1.11.1
and CCL backbones, which each contain a 50LTR in their leader
sequence, was minimal until 8 hr after transduction and increased
1796 Molecular Therapy Vol. 25 No 8 August 2017
thereafter. The percentage of EGFP-positive cells produced by
LTR1.13.0 was significantly higher than LTR1.11.1 and CCL over
the duration of the experiment, as determined by the differences
between AUCs (p = 0.039 by Kruskal-Wallis multiple comparison
test).

We looked deeper into the rapid onset of LTR1 expression by
examining the timing of intracellular reverse-transcription products
using late-RT qPCR35 (Figure 6C). This analysis revealed that
LTR1.13.0 reverse-transcription products were significantly greater
than CCL over the initial 6 hr post-transduction (p = 0.036 by t
test). LTR1.13.0 late-RT products were detectable by 1 hr post-in-
jection, at a level not matched by CCL until 4 hr post-injection
(Figure 6C). LTR1.11.1 did not produce late-RT products signifi-
cantly faster than CCL (p = 0.057), suggesting that minus-strand
transfer may be an influential factor in the onset of LTR1
expression.

LTR1 Vectors Can Be Used to Correct a Factor IX-Deficient

Mouse Model

To demonstrate gene therapy with LTR1 technology, we sought to
correct a factor IX (FIX)-deficient mouse model of hemophilia B
by in vivo FIX gene transfer. For this, we used codon-optimized fac-
tor IX cDNA (FIX) containing the hyperactive Padua mutation.36

To provide sufficient vector yields for this experiment, LTR1.25
and LTR1.27 backbones were used alongside the conventional
CCL vector backbone for comparison of in vivo transduction.
CCL-SFFV-FIX, LTR1.25-SFFV-FIX, and LTR1.27-SFFV-FIX vec-
tors were titered by qPCR to determine the infectious dsDNA pro-
viral copy number.

Vectors were delivered to neonatal mice by intravenous administra-
tion at post-natal day 1. The vector doses were determined by the total
number of administered viral genomes, with doses being 1.4 � 108

dsDNAvg for CCL, 1.7 � 107 dsDNAvg for LTR1.25, and 1.5 � 108

dsDNAvg for LTR1.27. Mouse livers and plasma samples were
collected upon termination of the experiment. The liver proviral
copy number was determined by qPCR, which were calculated as be-
ing 1.8 ± 0.9 for LTR1.25, 1.7 ± 0.9 for LTR1.27, and 1.4 ± 0.5 for CCL
(Figure 7A).

LTR1.25-treated mouse plasma contained mean factor IX protein
levels of 12.2 ± 5.2% of normal reference levels, which was similar
to the 12.3 ± 3.7% produced by CCL (Figure 7B). Mean plasma
factor IX activity was raised to 14.9 ± 7.5% normal levels by
LTR1.25, which again matched the CCL mean output of
12.6 ± 4.0% (Figure 7C). LTR1.27 treatment gave 22.9 ± 1.7%
factor IX protein levels and 24.4 ± 3.0% factor IX activity. No sta-
tistically significant difference was detected during analysis of
plasma factor IX protein (p = 0.153 by Kruskal-Wallis) and activity
(p = 0.35 by Kruskal-Wallis). The overall level of factor IX resto-
ration would be sufficient for corrective gene therapy in hu-
mans,37,38 thus demonstrating that LTR1 is effective as a gene
therapy vector in this setting.



Figure 5. LTR1 Vectors Can Be Used for Efficient In Vivo Gene Delivery

(A) Newborn mice were either intracranially or intravenously injected with integration-proficient (IPLV) LTR1.20-SFFV-EGFP to target brain and liver, respectively. After 1 week,

macro fluorescence microscopy revealed strong EGFP expression in both organs. (B) Immunohistochemical staining of paraffin-embedded coronal slices of injected brains

showsneuronal EGFPexpression following intracranial LTR1 delivery. The black arrows showareaswith EGFPpositivity, while the yellow and red arrows showhippocampal and

cortex staining, respectively. (C) Longitudinal bioluminescent monitoring of LTR1 and CCL luciferase expression in the brain. Newborn mice were intracranially injected at post-

natal day 1 with either CCL-SFFV-Luc-T2A-EGFP or LTR1.20-SFFV-Luc-T2A-EGFP (n = 3 animals for each group, data expressed as means ± SEM). Brain bioluminescence

was quantified at regular time intervals over a 36 day period. No statistically significant difference was detected by t test (p = 0.087), indicating that LTR1.20 is capable of

matching standard lentiviral vector brain transduction. (D) Bioluminescentmonitoring of LTR1 expression in the liver following intravenous vector injection at post-natal day 1with

either CCL-SFFV-Luc-T2A-EGFP or LTR1.20-SFFV-Luc-T2A-EGFP (n = 3 animals for each group, data expressed as means ± SEM). Bioluminescent measured in LTR1.20-

transduced livers was significantly higher than CCL-transduced livers over the entire 36 day period following t test comparison of area under the curves (p = 0.018).
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DISCUSSION
Lentiviruses offer a number of advantages as gene therapy vectors
and their development continues to progress.3–6 They can be engi-
neered to carry genetic information into a broad range of cell types
and can efficiently integrate their genomes into target cell chromo-
somes, resulting in permanent DNA delivery. These properties
make lentiviral vectors useful in a range of scenarios, such as study-
ing the biological effects of transgenes on pre-clinical disease
models, the generation of transgenic animal strains, and the transfer
of therapeutic sequences to treat human disease.39,40 Despite these
advantages, there is scope for further improvement of lentiviral vec-
tor technology, given their reported interference with the human
genome owing to the concurrent delivery of wild-type HIV cis
elements.19,20,41,42

We have developed a lentiviral vector with a novel formation that en-
sures minimal transfer of wild-type HIV-1 sequences. The LTR1
reverse-transcription mechanism is unprecedented in retrovirology,
as all other retroviruses and retrovirus-derived vectors require at least
two strand transfer events to complete proviral synthesis. In LTR1
vectors, minus-strand synthesis is primed adjacent to a solitary
30LTR, thus rendering the usual first strand transfer event obsolete.
This demonstrates that the first strand transfer event in reverse-tran-
scription is not necessary for functional lentiviral transduction of
Molecular Therapy Vol. 25 No 8 August 2017 1797
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Figure 6. LTR1 Vectors Produce Transgene

Expression Earlier than Standard Lentiviruses

(A) Newborn mice were imaged 20 min after intracranial or

intravenous injection of CCL-SFFV-T2A-EGFP or LTR1.20-

SFFV-T2A-EGFP to determine whether any early expres-

sion was detectable. LTR1 vectors are capable of pro-

ducing very early transgene expression, which is not seen

with third generation CCL. (B) Time course experiment

showing the timing of EGFP expression during the initial

48 hr after transduction. HT1080 cells were plated and

simultaneously transduced with CCL-GEW (blue line, circle

marker), LTR1.11.1-GEW (red line, cross marker), or

LTR1.13.0-GEW (black line, triangle marker) at MOI 1 (n = 3

for each group, data expressed as means ± SEM). Trans-

duced cells were harvested at various time points and

processed in a flow cytometer to determine the percentage

of EGFP-positive cells. The LTR1.13.0 vector, which does

not contain a 50LTR, began to produce EGFP expression at

an earlier time point and sustained higher expression than

CCL or LTR1.11.1 vectors, which do contain a 50LTR (p =

0.039 by Kruskal-Wallis multiple comparison of area under

the curves for the three experimental groups). (C) Analysis

of reverse-transcription products in HT1080 cells during

the initial 24 hr post-transduction shows that LTR1.13.0 and LTR1.11.1 products appear sooner than those of CCL. Reverse-transcription products are expressed relative to

the final copy numbers detected at 24 hr post-transduction (n = 3 for each group, data expressed as means ± SEM).
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target cells, revealing an interesting facet of HIV biology. Importantly,
this potentially constitutes a shortening of the viral life-cycle and
increased in vivo efficacy, analogous to self-complementary AAV
(scAAV).43

The structure of the LTR1 provirus reveals interesting insights into
HIV biology and brings an important technological advancement
in terms of the potential safety of clinical gene therapy. HIV-1
RNA packaging sequences comprise approximately 1.9 kb of its
genome, meaning that third generation lentiviruses bear 20%
sequence homology with wild-type HIV-1. Here, and in previous
studies, lentiviral proviruses have been shown to produce full-
length RNA genomes that can be remobilized in replicating
HIV-1 particles, even with the use of a self-inactivating LTR.22–24

Third generation vector genome remobilization poses a risk that
cannot be ignored when using standard third generation vectors,
but, importantly, we show that it can be avoided through use of
LTR1. In our investigations, HIV-1 packaging sequences were un-
detectable in LTR1 proviruses, which were resistant to remobiliza-
tion in the HIV-1-like particles, thus providing a significant
advancement in clinical safety. This is important when considering
lentiviral vectors as agents for treatment of HIV-1 infections and,
as the number of trials using lentiviruses increases and becomes
more widespread, this will concurrently increase the risk of co-
infection with HIV.

HIV-1 packaging sequences contain active splice donor and splice
acceptor sites, which have previously proven very difficult to remove
from vector genomes.27–29 We performed a preliminary investigation
into the frequency of vector-host fusion transcripts in HEK293T cells
1798 Molecular Therapy Vol. 25 No 8 August 2017
transduced with LTR1 and standard lentiviral vectors. Data resulting
from these initial analyses showed that LTR1 technology can reduce
the frequency of splice fusions by 87%, compared to standard lenti-
viral vectors. LTR1.20 fusion transcripts were slightly higher than
LTR1.7.671, possibly due to the presence of an intron in the
LTR1.20 leader sequence, but still showed a 73.5% reduction from
the CCL level. The reduced propensity of LTR1 to splice into cell
genes would enhance clinical safety by reducing the risk of generating
potentially harmful patient-vector fusion transcripts. This would
bring significant advantages for the long-term clinical use of lentiviral
vectors, given the reported links between retrovirus-host fusion
transcripts and oncogenesis and warrants further investigation in
the future.20,41,44,45

We have shown that LTR1 vectors can be produced at titers sufficient
for pre-clinical gene therapy. We demonstrated LTR1-mediated
correction in a hemophilia B mouse model, in which LTR1.25 and
LTR1.27 were able to deliver liver VCNs equal to a standard CCL len-
tiviral vector. Plasma factor IX expression was detected at therapeutic
levels and with sufficient biological activity, upon termination of the
experiment, indicating that LTR1 could be used for stable disease
correction in a gene therapy setting.

Close analysis showed that LTR1.27 restored mouse plasma factor IX
activity to around 24% of normal levels when delivered at a similar
dose to CCL, which returned around 13%. The level of factor IX
expression derived per injected LTR1.27 genome is an intriguing
matter for further investigation. While encouraging, it cannot be
ignored that all vector doses were based on the infectious titer, which
we have identified as being lower than the physical particle titer in the



Figure 7. LTR1 Increases Plasma Factor IX Expression following Treatment

of a FIX-Deficient Mouse Model

LTR1.25-SFFV-FIX (n = 3), LTR1.27-SFFV-FIX (n = 3), or CCL-SFFV-FIX (n = 4) was

intravenously administered to newborn mice and compared to untreated knockouts

(n = 3). Plasma factor IX was assayed when the experiment was terminated. All data

are presented as individual data points with overlaid boxplots representing median

lines (red), the upper and lower range (black lines), and 75% confidence intervals

(blue boxes). (A) qPCR calculation of liver proviral copy numbers found that

LTR1.25, LTR1.27, and CCL liver transduction was comparable. (B and C) Plasma

factor IX protein levels (% normal levels) (B) and plasma factor IX activity levels (%

normal levels) were restored to therapeutic levels by all vector treatment groups (C).
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case of LTR1.20, compared to CCL. Therefore, there is a possibility
that excess defective particles were also injected along with functional
LTR1.25 and LTR1.27 particles, potentially impacting on transduc-
tion. Possible mechanisms might include blocking clearance of parti-
cles in cells such as Kupffer cells, thus allowing more vector particles
to infiltrate hepatocytes.

During longitudinal tracking of luciferase expression in neonatally
injected CD1mice, LTR1 showed significantly more liver biolumines-
cence than a titer-matched third generation CCL over the course of
the experiment (36 days). The exact mechanism for this difference
is unclear, and the influence of excess defective particles cannot be
ruled out, considering that the CCL profile appears to match LTR1
at early stages of the investigation before decreasing from day 18,
which was less pronounced with LTR1. This profile was not observed
following brain transduction.

An intriguing feature witnessed during LTR1 characterization was the
rapid onset of transgene expression. This was observed both in vitro
and in vivo, with two separate vector transgene cassettes. Following
intracerebral and intravenous LTR1.20-luciferase injections, mice
were immediately examined for bioluminescence. This investigation
revealed that LTR1.20 was capable of producing luciferase expression
20 min after injection, potentially indicating a unique functionality
that could be exploited. This early level of expression was not pro-
vided by third generation CCL. Leading on from this finding, we
sought to investigate how the structure of LTR1 RNA could influence
the timing of transgene expression in vitro. This experiment revealed
that when LTR1 was lacking a 50LTR (LTR1.13.0; Figure 2A), there
was a significant acceleration of transgene expression during the
initial 48 hr after transduction. Again, this may relate to the scAAV
vector paradigm in which shortening of the replication phase of trans-
duction improves the speed and efficiency of transgene expression.43

Given that the percentage of EGFP-positive cells increased across
every time point, we would expect that any delivery of pseudo-pack-
aged EGFP protein46 or direct translation of vector RNA47 would
have had a negligible effect on total EGFP output.

The data concerning the onset of reverse-transcription products
suggest that the smaller LTR1 genome and unique reverse-transcrip-
tion pathway may facilitate rapid copying of its RNA genome, thus
accelerating the onset of gene expression. Interestingly, LTR1.11.1,
which does perform both strand transfer events, also produced
reverse-transcription products earlier than a standard vector, suggest-
ing that minus-strand transfer is not the exclusive reason for differ-
ences in the speed of transduction. The size of the LTR1.11.1 provirus
is approximately 1.5 kb smaller than that of the standard CCL vector,
thus the speed of transduction may be partly influenced by the size
and complexity of the template to be copied. This rapid onset of
expression constitutes a unique feature of LTR1 that may be exploited
for gene therapy purposes in scenarios requiring vector expression
within a short time frame. This could be particularly advantageous
during ex vivo manipulation of stem cells and when using non-
integrating lentiviral vectors, given that unintegrated proviruses are
rapidly lost from dividing cells after repeated passages.

Our extensive characterization of LTR1 vectors has revealed inter-
esting features that will be important to consider when moving for-
ward with further LTR1 development. During northern blot analysis
of packaged vector genomes, we discovered that LTR1 vectors are
dependent on the expression of HIV-1 Tat in producer cells for effi-
cient transcription of full-length viral genomes. We observed that
shorter transcripts were generated in the absence of Tat, presumably
due to undesirable termination of transcription and poly-adenylation
at the solitary LTR. We expect that this was rescued by Tat due to its
ability to promote transcriptional readthrough of the 30LTR through
its binding the HIV-1 trans-activation response element (TAR).48
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Additionally, we have highlighted that in vitro transduction of cells
requires a greater LTR1.20 p24 dose and vector RNA dose to match
the efficacy of a standard lentiviral vector. LTR1.20 RNA titers and
physical particle titers were calculated as being similar to CCL, sug-
gesting that RNA packaging is not compromised. However, the
reduced titer of integrated proviruses and GFP-forming units suggest
that differences may exist in the processing of LTR1.20 RNA during
transduction and integration. The later generations of LTR1.25 and
LTR1.27 show improved titers, hinting at an improved level of stable
transduction efficiency. As LTR1 technology continues to progress, it
is possible that the efficiency of transduction will eventually match
that of standard lentiviral technology. By understanding and control-
ling LTR1 characteristics, there is potential to further increase the
infectious titer through experimentation and process development
to exploit its unique characteristics. Furthermore, if integration effi-
ciency does prove to be the limiting factor for in vitro LTR1 efficacy,
then LTR1 could be expected to meet the efficiency of standard lenti-
viral technology when used as an integration-deficient lentivirus
(IDLV). Until the precise mechanism for limited LTR1 infectivity is
defined, we must acknowledge the risk that the presence of defective
LTR1 particles might create, which could theoretically cause adverse
effects in humans. Furthermore, a low infectious titer versus a phys-
ical titer could negatively impact on the feasibility of licensed LTR1
products.

Gene therapy with lentiviral vectors is being pursued for a rapidly
increasing cadre of diseases including beta globinopathies, chronic
granulomatous disease, leukodystrophies, and blood cancers.49–54

As the range of targets broadens and larger patient populations stand
to benefit, it will be necessary to ensure that vectors provide the
maximum assurance of patient safety. LTR1 vector technology offers
a safety improvement that meets this need and could form an impor-
tant component of next-generation lentiviral vectors.

MATERIALS AND METHODS
Generation of Plasmid Constructs

All plasmid constructs were made using standard molecular cloning
procedures and PCR-mediated deletion of plasmid sequences.55

Detailed plasmid information is available upon request.

Cell Culture Maintenance

HEK293T cells were used for production of viral vectors, remobiliza-
tion assays, and for analysis of fusion transcripts. HT1080, a human
fibrosarcoma cell line, was used for titration of VCNs by qPCR.
HEK293T and HT1080 cell lines were cultured at 37�C in DMEM
(Invitrogen) supplemented with 10% (v/v) fetal bovine serum. All
lines were split three times per week, when �80% confluence was
reached.

Production of Lentiviral Vectors

Lentiviruses were produced using a second-generation packaging
system as described previously.3 Briefly, 1.8 � 107 HEK293T cells
were plated in a 15 cm dish and transfected with 40 mg of the
relevant transfer plasmid, 30 mg of pCMVDR8.74, and 10 mg of
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pMDG.2 DNA (plasmids produced by PlasmidFactory) and were
mixed in 5 mL Opti-MEM and filtered through a 0.22 mm filter
before combining with 5 mL Opti-MEM (Life Tech/GE) containing
1 mL of 10 mM polyethylenamine (PEI, Sigma). The resulting 10 mL
mixture was applied to HEK293T cells after 20 min incubation at
room temperature. The transfection mix was removed after 4 hr
and replaced with fresh culture medium. Virus-containing medium
was collected twice at 48 hr and 72 hr post-transfection. After each
harvest, the collected medium was filtered through a cellulose ace-
tate membrane (0.45 mm pore). Lentivirus harvests were combined
before concentration by ultracentrifugation. Briefly, viruses were
placed in 25 � 83 mm polyallomer centrifuge tubes (Beckman
Coulter) and centrifuged for 2 hr at 90,000 � g at 4�C in a Sorvall
Discovery 90SE Centrifuge. Following centrifugation, the super-
natant was removed and the pellet was re-suspended in 200 mL
Opti-MEM for 500-fold concentration.
Titration of Lentiviral Vectors

Vector titration by flow cytometry: 1 � 105 HEK293T cells were
plated into each well of a 6-well plate and transduced with a range
of volumes of concentrated lentivirus. At 72 hr after transduction,
cells were trypsinized and EGFP-positive cells were quantified using
a BD Cyan flow cytometer or BD FACSArray Bioanalyzer 3 days after
transduction.

HEK293T cells were not used for qPCR titration due to their reported
abnormal karyotype.56 Briefly, 1� 105 HT1080 cells were plated into
each well of a 6-well plate and transduced with a range of volumes of
concentrated lentivirus. At 72 hr after transduction, genomic DNA
was extracted and the provirus titer calculated by qPCR, as described
previously.57 The viral capsid number was determined using a p24
ELISA kit (Clontech - 632200). The capsid number was determined
according to the kit manufacturer’s calculations, where 1 ng p24 is
equivalent to 1.25 � 107 lentiviral particles (lp). The vector RNA
genome titer was determined using a qRT-PCRRNA titration kit con-
taining pre-designed primers and standards (Clontech - 631235). For
all titer comparisons, LTR1 and third generation vectors were pro-
duced side-by-side to account for variations between production
batches.
Detection of EGFP Expression in Transduced Cells

Flow cytometric detection of EGFP expression was used for titration
and characterization of LTR1 vectors. Unless stated otherwise,
100,000 cells were analyzed for detection EGFP expression in a
BD FACSArray Bioanalyzer. EGFP fluorescence was excited using
a 488 nm laser. During analysis of flow cytometry plots, cells were
gated by plotting forward-light-scatter versus side-scatter to isolate
the live population. EGFP-positive populations were identified by
plotting EGFP fluorescence (detected using a 530/30 nm band-
pass filter) versus emission from the yellow channel (detected using
a 575/26 band-pass filter) to compensate for auto-fluorescent events.
Non-transduced cell populations were used as negative controls
to set the background level of emission in each channel. All flow
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cytometry data were analyzed by FlowJo software version 9.3.1 (Tree
Star).

Dose-Response Profiling of LTR1 Vectors versus Third

Generation Lentiviral Vectors In Vitro

HT1080 cells were infected with either LTR1.20-SFFV-Luc-T2A-
EGFP or CCL-SFFV-Luc-T2A-EGFP at a range of MOI, prepared
by serial 2-fold dilutions of starting stocks. To avoid the influence of
unintegrated lentiviral expression, cells were expanded for 14 days
before analysis by flow cytometry and genomic DNA extraction for
proviral copy number analysis. The starting vector stock was assayed
for p24 concentration by p24 ELISA and the vector RNA genome titer
was calculated by qRT-PCR, with methods described in Titration of
Lentiviral Vectors.

PCR Analysis of Integrated LTR1 Proviruses

HT1080 cells were transduced with either LTR1.20-SFFV-EGFP or
CCL-SFFV-EGFP at an MOI of 10. At 2 weeks after transduction,
cells were harvested and genomic DNA was extracted using a DNeasy
Blood and Tissue kit (QIAGEN). To determine the size of the vector
backbone, genomic DNA was PCR-amplified using oligos specific for
the lentiviral 50LTR-primer binding site junction (50-AAATCTCTA
GCAGTGGCGCCCGAACAG-30) and the 30LTR R region (50-GCA
CTCAAGGCAAGCTTTATTGAGGCTT-30).58 The PCRwas carried
out using q5 polymerase (New England Biolabs) with conditions:
98�C for 30 s; followed by 28 cycles of 98�C for 10 s and 72�C for
1 min 50 s; and a final step of 72�C for 2 min. Amplicons were visu-
alized on a 1% agarose gel to confirm provirus sizes.

Northern Blotting of Vector RNA

RNA species from pCCL, pLTR.1.7.671, and pLTR1.20 were
analyzed during particle production or after proviral integration.
For analyzing vector genomes during packaging, 107 HEK293T
cells were transfected with 12 mg pcDNA3.HIV-1g/p.4�CTE,59

5 mg pRSV.Rev (kindly provided by T.J. Hope, Chicago, IL), 5 mg
pcDNA3.Tat, 2 mg pMD2.G, and 5 mg pCCL, pLTR.1.7.671, or
pLTR1.20 vector DNA using the calcium phosphate transfection
method. Transfection was controlled by co-transfecting 2 mg non-
viral pCMV.DsRedexp expression plasmid (Clontech Takara). At
2 days post-transfection, the cells were harvested, analyzed by
flow cytometry and their total RNA was extracted using RNAzol-
RT (Molecular Research Center) according the manufacturer’s
instruction. For the analysis of proviral vector RNA species,
2 � 105 HEK293T cells were transduced with serial dilutions of
CCL, LTR.1.7.671, or LTR1.20. At 4 days post-transduction, cells
were harvested, analyzed by flow cytometry, and the total RNA of
similarly transduced cells (59%–65% EGFP+) was extracted with
RNAzol-RT. All isolated RNAs were subjected to northern blot
analysis using standard protocol procedures. In brief, 10 mg of
each RNA sample were separated on 1% agarose gel under dena-
turing conditions, transferred to a Biodyne B membrane (Pall)
and analyzed via radioactive probing. Probes directed against
EGFP and 18S RNA (loading control) were labeled with 32P using
the DecaLabel DNA Labeling Kit (Thermo Fisher Scientific).
Examination of Provirus Structure by Plasmid Rescue

The CCL-Rescue and LTR1.20-Rescue plasmids were produced by
excising the pBR32260 elements from the respective plasmids and
relocating them to the lentiviral transgene region (Figure S4).
HEK293T cells were plated in 6-well plates at a density of 1 � 105

cells per well and transduced with either 10 mL (0.1 mg p24) of
concentrated CCL-Rescue or 200 mL (15 mg p24) of concentrated
LTR1.20-Rescue. Cells were maintained in culture for 2 weeks before
extracting genomic DNA. For each sample, 10 mg of genomic DNA
was treated with XbaI (to ensure extensive cutting of the human
genome while avoiding digestion of viral genomes) for 1 hr before
column purification (QIAGEN PCR Purification Kit - 28104) and
ligation. Electrocompetent Stbl4 cells (Life Technologies) were trans-
formed with the ligated sample in a 0.1 mm electroporation cuvette at
a frequency of 1.2 kHz and 25 mF capacitance. Transformed bacteria
were then selected on agar plates (100 mg/mL ampicillin) to isolate
any provirus-containing colonies, from which plasmid DNA was
harvested and screened for the presence of lentiviral proviruses by
targeted restriction digest of lentiviral LTRs (with AflII) extracted
plasmid DNA. The provirus-containing plasmids were subsequently
sequenced to determine the composition of integrated LTR1.20 and
CCL proviruses.

Detection of Remobilized Self-Inactivating Lentiviral Genomes

HEK293T cells were transduced with CCL-SFFV-EGFP or LTR1.20-
SFFV-EGFP with a range of vector doses. At 11 days after trans-
duction, a sample of each population was taken for genomic DNA
extraction and qPCR quantification of VCNs. For each production
replicate, 1.8 � 107 transduced cells were seeded into T175 flasks.
At 24 hr later, each flask was transfected with 30 mg of pCMVDR8.74
and 10 mg of pMDG.2. DNA was mixed in 5 mL Opti-MEM and
filtered through a 0.22 mm filter before combining with 5 mL Opti-
MEM containing 1 mL PEI (10 mM). The resulting 10 mL mixture
was applied to the transduced cells after 20 min incubation at room
temperature. The transfection mix was removed after 4 hr and
replaced with fresh culture medium. Lentiviral supernatants were
processed as described in Production of Lentiviral Vectors. Fresh
HEK293T cells were seeded in 6-well plates at a density of 1 � 105

cells per well and transduced with 50 mL of the concentrated viruses
(n = 3). At 11 days after transduction, cells were analyzed by flow cy-
tometry to detect the number of EGFP-expressing cells. Cells were
analyzed in a BD FACSArray Bioanalyzer and non-transduced cells
provided the baseline for background fluorescence.

Transcriptomic Profiling of Vector-Host Fusion Transcripts

HEK293T cells were transduced with CCL-GAPDH-EGFP,
LTR1.7.671-GAPDH-EGFP, or LTR1.20-GAPDH-EGFP at a
range of doses and VCNs quantified by qPCR. Samples with simi-
larly matched copy numbers were processed for transcriptomic
profiling. Total RNA was extracted from cells and 1 mg was pro-
cessed, with ribosomal RNA depleted using the Kapa RiboErase
kit (Kapa Biosystems - KK8483). RNA was fragmented to produce
intact fragments of 200–300 bp and adaptor-ligated sequencing
libraries were prepared according to the manufacturer’s protocol.
Molecular Therapy Vol. 25 No 8 August 2017 1801
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Libraries were sequenced on the Illumina NextSeq system. FASTQ
files were analyzed on the Galaxy platform61 (http://www.usegalaxy.
org instance) by mapping paired reads to the human genome (hg38)
using HISAT62 and subsequently BWA-MEM63 mapping the pair of
hg38-aligned reads to the relevant vector provirus.

Animal Procedures

For in vivo investigations, outbred CD1 mice (Charles River), or
hemophilia B mice64 were time mated to produce neonatal animals.
At post-natal day 1, non-randomized neonates were subjected to brief
hypothermic anesthesia and injected with lentiviral vectors via the
appropriate route. Intracranial injections were performed bilaterally
into the lateral ventricles.65 Intravenous injections were administered
via the superficial temporal vein. Experimental groups were blinded
during the course of in vivo investigations, with the exception of
images taken for Figure 6A. All experiments were performed in
accordance with relevant guidelines and regulations. Experiments
were carried out under United Kingdom Home Office regulations
and approved by the ethical review committee of University College
London.

Confirmation of Vector Efficacy In Vivo by Luciferase Expression

To monitor LTR1 bioluminescence in vivo, LTR1.20-SFFV-Luc-
T2A-EGFP (2.0 � 107 TU/mL) or CCL-SFFV-Luc-T2A-EGFP vec-
tors (3.6 � 107 TU/mL) were administered either intracranially
(2 � 5 mL bilaterally) or intravenously (40 mL) to 1-day-old neonatal
CD-1 mice. Images and bioluminescence data were gathered contin-
ually for 36 days as described previously.34 Briefly, animals were intra-
peritoneally injected with firefly D-luciferin (150 mg/kg) and imaged
after 5 min with a cooled charge-coupled device (CCD) camera (IVIS
Lumina II, PerkinElmer). Regions of interest were defined manually
using a standard area for the organ under investigation. Signal
intensities were expressed as photons per second per centimeter2

per steradian, with background signal measured at each time point
and subtracted from test values.

Immunohistochemistry Staining and EGFP Imaging of LTR1.20-

SFFV-EGFP Transduced Brains

CD-1 mice were injected with LTR1.20-SFFV-GFP (2.34 �
107 TU/mL) at post-natal day 1. Mice received vector either by
direct intracranial injection into the left lateral ventricle (5 mL), or
intravenously (20 mL). At 1 week later, they were sacrificed and organs
imaged by fluorescence microscopy (Leica MZ16) or immunohisto-
chemistry. For immunohistochemistry, brains were embedded in
paraffin wax and sliced in the coronal plane in preparation for
EGFP-staining. Brain sections were treated with 30% H2O2 in tris-
buffered saline (TBS) for 30 min and blocked with 15% of goat serum
(Vector Laboratories) in TBS-tween 20 (TBST) for 30 min. Rabbit
anti-GFP (1:10,000; Abcam) was added in 10% goat serum in TBST
and left on a gentle shaker overnight at 4�C. Goat anti-rabbit
(1:1,000; Vector Laboratories) was then added in 10% goat serum
in TBST for 2 hr. The sections were incubated for a further 2 hr
with VECTASTAINABC (Vector Laboratories), followed by addition
of 0.05% 3,30-diaminobenzidine (DAB) and brief incubation. Sections
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were transferred to ice-cold TBS. Each individual brain section was
mounted on chrome gelatin-coated Superfrost Plus slides (VWR)
and left to dry for 24 hr. The slides were dehydrated in 100% ethanol
and placed in Histo-Clear (National Diagnostics) for 5 min before
mounting with DPX mounting medium (VWR).

Monitoring In Vitro EGFP Expression during Early Stages of

LTR1 Transduction

HT1080 cells were plated onto 6-well plates at a density of 1 �
105 cells per well in a 1 mL volume and simultaneously transduced
with LTR1.11.1-GAPDH-EGFP, LTR1.13.0-GAPDH-EGFP, or CCL-
GAPDH-EGFP at an MOI of 1. At various time points after trans-
duction, cells were trypsinzed and harvested for flow cytometric anal-
ysis of EGFP expression as described in Titration of Lentiviral Vectors.
Genomic DNA was extracted from cell pellets and analyzed for
reverse-transcription products using a previously reported late-RT
qPCR assay.35 Briefly, genomic DNAwas treated with DpnI restriction
enzyme to remove any plasmid carried over during vector production,
before qPCR analysis by absolute quantification. Copy numbers were
extrapolated from a standard curve and copy numbers were expressed
relative to the copy number detected at 24 hr post-transduction.

LTR1-Mediated FIX Delivery

A codon-optimized version of FIX containing the hyperactive Padua
mutation36 was synthesized by Integrated DNA Technologies and
cloned into pLTR1.25-SFFV, pLTR1.27-SFFV-FIX, or pCCL-SFFV
using AgeI and SalI restriction sites. Either CCL-SFFV-FIX (dose
of 1.4 � 107 dsDNAvg/mL) (n = 4), LTR1.25-SFFV-FIX (dose of
1.7 � 107 dsDNAvg/mL) (n = 4), or LTR1.27-SFFV-FIX (dose of
1.7 � 107 dsDNAvg/mL) (n = 3) was intravenously administered
to factor IX-deficient mice at post-natal day 1 (n = 4 each). Blood
samples were collected by lateral tail-vein puncture upon termination
of the experiment (67 days for CCL and LTR1.25 and 37 days for
LTR1.27). Plasma samples were analyzed for FIX expression by
ELISA (VisuLize Factor IX Antigen Kit - Affinity Biologicals) and
for FIX activity by chromogenic assay (BIOPHEN Factor IX chromo-
genic assay - Aniara). During the investigation, one untreated mouse
was culled due to excessive bleeding and one LTR1.25-treated mouse
was culled due to low body weight.

Statistical Analysis

All statistical analyses were carried out using eitherMATLAB 2015a or
Python SciPy open-source software.66 Line plots were compared by
calculating the AUC by trapezoidal numerical integration and subse-
quently performing a statistical test on the grouped data. For multiple
comparisons of EGFP percentage data, the Kruskal-Wallis test was
used to compare mean AUC, as normal distribution of data was not
assumed. For comparison of titrations and bioluminescence, a
two-tailed Welch t test was used to compare mean AUC. Both statis-
tical tests employed are robust for datasets without equal variance or
sample size. Mouse sample sizes were limited to three or four animals
per experimental group for in vivo investigations. Polynomial curve
fitting for ELISA and chromogenic assays were modeled in MATLAB
2015a.

http://www.usegalaxy.org
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Data and Materials Availability

All LTR1 plasmids are available under a material transfer agreement
(MTA) with UCL Business (mta@uclb.com).
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Supplementary Figure S1. LTR1 reverse-transcription requires fewer intermediate steps than 

a standard lentiviral vector. For all images, grey lines represent RNA, black lines represent 

the DNA product of reverse-transcription, and dashed grey lines represent RNA degraded by 

RNAse H. Left panel. Conventional lentiviral reverse-transcription can be broken-down in 

intermediate steps. A tRNA primer binds to the HIV-1 primer-binding site (PBS) on vector 

RNA and initiates minus strong-stop DNA synthesis, producing single-stranded DNA 

(ssDNA) complementary to the R-U5 portion of the HIV-1 LTR. Vector RNA is concurrently 

degraded by RNAse H, thus leaving R-U5 ssDNA free to base pair with the complementary 

R domain at the 3’ end of the vector RNA. Reverse transcriptase proceeds to complete 

synthesis of minus strand DNA, with PBS at the 5’terminus. Plus strand synthesis is then 

primed from the polypurine tract (PPT), reading through the 3’LTR (U3-R) and the tRNA, 

which is complementary to PBS. A single-stranded PBS is now present at both ends, which 



permits the second strand-transfer event. Reverse transcriptase then proceeds to complete 

plus strand synthesis to produce a double-stranded provirus. Right panel. LTR1 reverse-

transcription operates with fewer intermediate steps than standard lentiviruses. LTR1 vectors 

lack a 5’LTR, so reverse-transcription is primed on an internal PBS downstream of a solitary 

HIV-1 LTR (U3-R-U5 domains). This means that reverse-transcriptase can complete minus 

strand synthesis without performing a strand transfer event and skip straight to minus strand 

extension. Like conventional reverse-transcription, plus strand synthesis is primed from the 

PPT, reading through the full-length 3’LTR and tRNA, which is complementary to the PBS. 

Reading through the tRNA primer displaces the untranscribed RNA at the extreme 3’ end. 

This process displaces the internal PBS and excludes the HIV-1 packaging sequences from 

reverse-transcription. As per conventional reverse-transcription, a single-stranded PBS is now 

present at both DNA termini, which permits the second strand-transfer event and synthesis of 

a double-stranded DNA provirus. With Ψ-RRE sequences situated downstream of all reverse-

transcription events, these sequences are not incorporated into the final LTR1 provirus. 

 

 

  



 

Supplementary Figure S2. Northern blot analysis of LTR1 RNA products. HEK293T cells 

were transfected with LTR1.7.671-GEW, LTR1.20-GEW or CCL-GEW plasmids. Vectors 

were produced with or without pcDNA3.Tat during production. RNA was extracted from 

each treated cell population and processed for northern blot, where RNA was probed for 

EGFP. EGFP-probed phosphorescence was exposed for 1 hour (left panel) or 2 hours (right 

panel) at -80°C. Samples were loaded with mass of 10µg, with LTR1.7.671-GEW also loaded 

at 15µg. Red arrow points to the LTR1.7.671-GEW band assumed to be full-length vector 

genome transcript. The mock RNA sample was extracted from untreated HEK 293T cells. 

 



 

Supplementary Figure S3. PCR amplification of LTR1.20-SFFV-eGFP provirus. Genomic 

DNA of HT1080 cells transduced with either CCL-SFFV-eGFP (lane 3) or LTR1.20-SFFV-

eGFP (lane 4) was amplified using primers directed against the flanking lentiviral LTRs. 

Water (lane 1) and untransduced HT1080 genomic DNA (lane 2) were devoid of any non-

specific amplification. PCR products were analysed alongside the Invitrogen 10kb+ DNA 

ladder (lane 5), which showed that CCL (3.5kb) and LTR1.20 (2.3kb) samples produced 

amplicons of the expected sizes. The primer binding sites relative to each provirus have been 

shown above the gel image. 

  



  

 

Supplementary Figure S4. Plasmid rescue vector genomes. The pBR322 selection marker, 

containing an ampicillin resistance gene and bacterial origin of replication, was cloned into 

the vector transgene region of pCCL (top) or pLTR.20 (bottom). AmpR – ampicillin 

resistance gene for bacterial selection; Ori – pBR322 plasmid origin of replication for 

propagation in bacterial cells. 
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CTTCCCCCTTACCTGACAGCTGTTATTAGATTACGGCCGAATGTCCAATCTTTAACATCATGATGTAGG
GCTCTGTGGTTAACCCATTGCCAAATGTTTTATTATTTCCATAGGTTTAGTGGTCCCAACTTCGGATCTC
ATGTGAGGAAGGTCAAAATGACAGCTTGAAAATATTCCTAACCCGGGGATTGCAGTGCCCATAAGAAAT
GATTGCCAGTGGGGAGAAAGCCCATTTGCTGATTCCACATCTTGTGCTAGCTTTTACACAAATCATCTC
ACAGAAGAATTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCT
CTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCA
ATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATC
CCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTGCTAGCCTGG
GCAGGTGTCCACTCCCAGTTCGCTAGCGTTAACTTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTG
CAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAA
AAATTCAAAATTTTATCGATCACGAGACTAGCCTCGAGCCAGGTGGCACTTTTCGGGGAAATGTGCGC
GGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATA
AATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTT
TTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGAT
CAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCG
CCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTAT
TGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCAC
CAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATG
AGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTT
GCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAA
ACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAA
CTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTT
CTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC
GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGG
AGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTG
GTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGA
TCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGC
GTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTT
GCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCC
GAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCC
ACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTG
CCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG
GTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGA
TACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGG
TAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTA
TAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGA
GCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACA
TGTGAATTCGAGCTCGGTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTT
AAAAGAAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTA
CTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTT
AAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAAC
TAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAAGAATCCTTACACTCTCTGATGC
AGGAGACAATATCCCCAATCACAGGTGAGGGTGCTGACATTAGAGAAGCAAGCCATTCAGCAACAGCT
TAGGGGAAGAGCTCTCAAATGTAGTGTTTTCATACTCCAAAGTTCAGAGGAAGTGTTTCTTTCCCTTAAA
ATGGCAGCAGTTTTCAATTCTGATGTTATAGCTCAGAAGTGGGGACAGAGAGGGATAGTAGAAGGCTG
CCAAATGACATTAAATGAATTTTTTTCATGACAAAGTAATTCCTCAGAATCAGTTTTTTTCCCATTACCTA
ATTGAAGTATCATTATATTCTCATGTTTAATATGTTATTTAGCATATCACCAAGCAGATTGAAAAGGCCG
AAAATGAGCAAAAGAATGCACATATCACTCACTCATTGCCTGTCTTTGCTCTCTCCCTCATGAAGACATA
GAAGAGGAGGCTAGGGGATGCCCCCTCCTCTTCCCTCAGACAGGGGATTCTCACTGACAGAAATATGT
AATTCTTCACATTGCTTTAAAAATGTTCTTCTTCATGTGTATTTATGTGTTTTCAGCTTACTACTCTTATAC
CACCTGCTGTTCAAACAAAAAATCCCACCAAGCCAAGCAGAATTGATGAATATCCATTTACTTTTATTTT
AAAGGGTGCCTCAACTCTTTCAAATCCTAAAATCTTTACCGTATTAATTTGTTAAGGCTTCCTTTAGTAA
GTCAGGGTAAACCCTAA 
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Supplementary Figure S5. Sequence composition of representative plasmid rescue clone. The 

sequencing data for the rescued LTR1.20 provirus confirms the expected internal provirus 

structure that would be produced following pCi intron splicing in producer cells (non-shaded 

text) and shows the repeated dinucleotide pairs at either end of the integrated provirus (bold 

text) resulting from genomic integration. The shaded text is homologous to human 

chromosome 2, flanking the repeated dinucleotides at position 200238350-200238354. The 

map represents the contents and structure of the provirus, devoid of HIV-1 packaging 

sequences. 

  



 

Supplementary Figure S6. Flow cytometry dot plots for remobilisation assay samples. HEK 

293T cells transducd with mock remobilised vectors were analysed by flow cytometry for 

GFP positivity. Vector remobilised by a CCL sample of VCN 2.03 gave clear remobilised 

GFP vector titres, whilst LTR1.20 showed resistance to remobilisation even a higher VCN 

dose of 3.75. 
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Supplementary Figure S7. Representative bioluminescent images of SFFV-Luc-T2A-eGFP-

transduced animals. Outbred CD1 mice received titre-matched intravenous doses of either 

LTR1.20-SFFV-Luc-T2A-eGFP or CCL-SFFV-Luc-T2A-eGFP at postnatal day 1. Mice 

were imaged continually throughout the following 36 days to track vector expression in vivo. 

Here, we show representative images taken at 20mins (day 0), 5 days, 15 days and 36 days 

post-administration. 
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