Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates
- Details
- Category: Covid Vaccine Research
- Created: Sunday, 13 March 2016 22:48
- Written by Qidi Wang, Lianfeng Zhang, Kazuhiko Kuwahara, Li Li, Zijie Liu, Taisheng Li, Hua Zhu, Jiangning Liu, Yanfeng Xu, Jing Xie, Hiroshi Morioka, Nobuo Sakaguchi, Chuan Qin, and Gang Liu
Cite this: ACS Infect. Dis. 2016, 2, 5, 361–376
Abstract
NOTE
This article is made available via the ACS COVID-19 subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
Results
Observation of ADE Induced by Inactivated SARS-CoV Vaccine in the Lungs of Macaques
Identification of Highly Immunodominant B-Cell Peptides of SARS-CoV in Humans
*, red-, blue-, and green-colored peptides represent the epitopes that were assembled into immunogenic peptides. ζ, neu (neutralizing) or ADE indicates the ability of the individual mAb to block or enhance, respectively, SARS-CoV infection of Vero E6 cells. #, the reactivity of individual peptides with antisera from 470 convalescent SARS patients (male, 192; female, 278) was determined using an ELISA. Commercially available ELISA kits were used to confirm that 81% of the 470 antisera were positive against viral lysates as antigen (cutoff value = 0.1). The titer of each serum was averaged from duplicate wells.
Epitope-Specific Antibodies of SARS-CoV Exhibited Enhancing or Neutralizing Functions in Vitro
Neutralization or Enhancement of SARS-CoV Infection in Non-human Primates by Epitope-Specific Antibodies
gross lung pathologya | infected cells in lungb | viral burdenc | ||||
---|---|---|---|---|---|---|
Vac | day 2 | day 6 | day 2 | day 6 | day 2 | day 6 |
1 | grade IV | grade IV | 13.5 ± 2.6 | 10.0 ± 3.0 | 141,000 | 136,000 |
2 | grade IV | grade IV | 13.8 ± 2.1 | 9.8 ± 3.0 | 116,000 | 143,000 |
3 | grade I–II | grade I–II | 7.4 ± 3.2 | 7.0 ± 2.9 | 6,200 | 7,300 |
4 | grade II–III | grade II–III | 8.14 ± 3.32 | 7.8 ± 2.91 | 6,835 | 31,254 |
Average gross lung pathology was determined by a standard in Table S8.
SARS-CoV-infected macrophages and alveolar epithelial cells in the vaccine groups were counted by using antipeptide antibodies.
Quantitative viral burden analysis by quantitative RT-PCR (viral copies/mg lung tissue).
Discussion
Materials and Methods
Peptide Design and Synthesis
Synthesis and Characterization of Multiple Antigen Peptides (MAPs) (36)
PEPscan (Peptide Screening) for Linear B-Cell Epitopes of SARS-CoV Recognized by Human Sera from SARS-CoV Recovered Patients
Binding of Mouse Monoclonal Antibodies to the SARS-CoV Virion
Analysis of Neutralization Using a Neutral Red Staining (NRS)-Based Assay
Generation, Purification, and Measurement of the Affinity of Antipeptide Monoclonal Antibodies
Macaque Experiments
Animals
Challenges with SARS-CoV
Pathologic Examination
Immunohistochemical Analysis of the Infected Lung Tissues
RT-PCR for Analysis of the SARS-CoV Burden
qRT-PCR for Analysis of the SARS-CoV Burden
Immunization of Monkeys
Macaques Treated by MAb43-3-14
Statistical Analysis
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsinfecdis.6b00006.
-
Neutralization and enhancement of SARS-CoV infection of Vero E6 cells in the presence of human antisera of convalescent SARS patients, design and synthesis of new peptides, generated antipeptide mAbs, monkeys for peptide vaccine immunization against SARS-CoV, pathologic classification of the severity of the lung damage in SARS-CoV-infected rhesus macaques, conditions for preparation of multiple antigen peptides (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
We are grateful to Professor Carl F. Nathan and Dr. Michael S. Diamond for their kind discussion and manuscript preparation. We thank Dr. Baoxing Fan for his serological evaluation of the large number of SARS-CoV convalescent antisera. The project described in this paper was supported by the National Institute of Allergy and Infectious Diseases (U01AI061092). The study was also partially supported for preparation of the monoclonal antibodies by contract research for MEXT for Emerging and Reemerging Infectious Diseases and Promotion of Fundamental Studies in Health Sciences (04-2) of the NIBIO and National Natural Science Foundation of China (No. 90713045). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References
This article references 51 other publications.
-
1Hilgenfeld, R.; Peiris, M. From SARS to MERS: 10 years of research on highly pathogenic human coronavirus. Antiviral Res. 2013, 100 (1), 286– 295, DOI: 10.1016/j.antiviral.2013.08.015
-
2Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H. R.Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1967– 1976, DOI: 10.1056/NEJMoa030747
-
3Li, W.; Shi, Z.; Yu, M.; Ren, W.; Smith, C.Bats are natural reservoirs of SARS-like coronaviruses. Science 2005, 310, 676– 679, DOI: 10.1126/science.1118391
-
4Guan, Y.; Zheng, B. J.; He, Y. Q.; Liu, X. L.; Zhuang, Z. X.; Cheung, C. L.Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003, 302, 276– 278, DOI: 10.1126/science.1087139
-
5Marra, M. A.; Jones, S. J.; Astell, C. R.; Holt, R. A.; Brooks-Wilson, A.The genome sequence of the SARS-associated coronavirus. Science 2003, 300, 1399– 1404, DOI: 10.1126/science.1085953
-
6Rota, P. A.; Oberste, M. S.; Monroe, S. S.; Nix, W. A.; Campagnoli, R.Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003, 300, 1394– 1399, DOI: 10.1126/science.1085952
-
7The Chinese SARS molecular epidemiology consortium. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 2004, 303, 1666– 1669. DOI: 10.1126/science.1092002
-
8Li, W.; Moore, M. J.; Vasilieva, N.; Sui, J.; Wong, S. K.Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450– 454, DOI: 10.1038/nature02145
-
9Jeffers, S. A.; Tusell, S. M.; Gillim-Ross, L.; Hemmila, E. M.; Achenbach, J. E.CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 15748– 15753, DOI: 10.1073/pnas.0403812101
-
10Wang, B.; Chen, H.; Jiang, X.; Zhang, M.; Wan, T.Identification of an HLA-A*0201-restricted CD8+ T-cell epitope SSp-1 of SARS-CoV spike protein. Blood 2004, 104, 200– 206, DOI: 10.1182/blood-2003-11-4072
-
11Wang, Y. D.; Sin, W. Y.; Xu, G. B.; Yang, H. H.; Wong, T. Y.T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. J. Virol. 2004, 78, 5612– 5618, DOI: 10.1128/JVI.78.11.5612-5618.2004
-
12Roberts, A.; Wood, J.; Subbarao, K.; Ferguson, M.; Wood, D.Animal models and antibody assays for evaluating candidate SARS vaccines: summary of a technical meeting 25–26 August 2005, London, UK. Vaccine 2006, 24, 7056– 7065, DOI: 10.1016/j.vaccine.2006.07.009
-
13Gillim-Ross, L.; Subbarao, K. Emerging respiratory viruses: challenges and vaccine strategies. Clin. Microbiol. Rev. 2006, 19, 614– 636, DOI: 10.1128/CMR.00005-06
-
14Graham, R. L.; Donaldson, E. F.; Baric, R. S. A decade after SARS: strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 2013, 11 (12), 836– 848, DOI: 10.1038/nrmicro3143
-
15Yang, Z. Y.; Werner, H. C.; Kong, W. P.; Leung, K.; Traggiai, E.Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 797– 801, DOI: 10.1073/pnas.0409065102
-
16Dandekar, A. A.; Perlman, S. Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol. 2005, 5, 917– 927, DOI: 10.1038/nri1732
-
17Subbarao, K.; Roberts, A. Is there an ideal animal model for SARS?. Trends Microbiol. 2006, 14, 299– 303, DOI: 10.1016/j.tim.2006.05.007
-
18Taylor, D. R. Obstacles and advances in SARS vaccine development. Vaccine 2006, 24, 863– 871, DOI: 10.1016/j.vaccine.2005.08.102
-
19Takada, A.; Kawaoka, Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev. Med. Virol. 2003, 13, 387– 398, DOI: 10.1002/rmv.405
-
20Tirado, S. M. C.; Yoon, K. J. Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 2003, 16, 69– 86, DOI: 10.1089/088282403763635465
-
21Gorlani, A.; Forthal, D. N. Antibody-dependent enhancement and the risk of HIV infection. Curr. HIV Res. 2013, 11 (5), 421– 426, DOI: 10.2174/1570162X113116660062
-
22Sullivan, N.; Sun, Y.; Binley, J.; Lee, J.; Barbas, C. F., 3rd; Parren, P. W.; Burton, D. R.; Sodroski, J. Determinants of human immunodeficiency virus type 1 envelope glycoprotein activation by soluble CD4 and monoclonal antibodies. J. Virol. 1998, 72 (8), 6332– 6338
-
23Guillon, C.; Schutten, M.; Boers, P. H.; Gruters, R. A.; Osterhaus, A. D. Antibody-mediated enhancement of human immunodeficiency virus type 1 infectivity is determined by the structure of gp120 and depends on modulation of the gp120-CCR5 interaction. J. Virol. 2002, 76 (6), 2827– 2834, DOI: 10.1128/JVI.76.6.2827-2834.2002
-
24Gorlani, A.; Forthal, D. N. Antibody-dependent enhancement and the risk of HIV infection. Curr. HIV Res. 2013, 11 (5), 421– 426, DOI: 10.2174/1570162X113116660062
-
25Halstead, S. B. Dengue. Lancet 2007, 370, 1644– 1652, DOI: 10.1016/S0140-6736(07)61687-0
-
26Goncalvez, A. P.; Engle, R. E., St; Claire, M.; Purcell, R. H.; Lai, C. J. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9422– 9427, DOI: 10.1073/pnas.0703498104
-
27Pierson, T. C.; Xu, Q.; Nelson, S.; Oliphant, T.; Grant, E.The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 2007, 1, 135– 145, DOI: 10.1016/j.chom.2007.03.002
-
28Taylor, A.; Foo, S. S.; Bruzzone, R.; Dinh, L. V.; King, N. J.; Mahalingam, S. Fc receptors in antibody-dependent enhancement of viral infections. Immunol Rev. 2015, 268 (1), 340– 364, DOI: 10.1111/imr.12367
-
29Pierson, T. C.; Sánchez, M. D.; Puffer, B. A.; Ahmed, A. A.; Geiss, B. J.; Valentine, L. E.; Altamura, L. A.; Diamond, M. S.; Doms, R. W. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology 2006, 346 (1), 53– 65, DOI: 10.1016/j.virol.2005.10.030
-
30Mehlhop, E.; Ansarah-Sobrinho, C.; Johnson, S.; Engle, M.; Fremont, D. H.; Pierson, T. C.; Diamond, M. S. Complement protein C1q inhibits antibody-dependent enhancement of flavivirus infection in an IgG subclass-specific manner. Cell Host Microbe 2007, 2 (6), 417– 426, DOI: 10.1016/j.chom.2007.09.015
-
31Huang, K. J.; Yang, Y. C.; Lin, Y. S.; Huang, J. H.; Lin, H. S.; Yeh, T. M.; Chen, S. H.; Liu, C. C.; Lei, H. Y. The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J. Immunol. 2006, 176, 2825– 2832, DOI: 10.4049/jimmunol.176.5.2825
-
32He, Y. X.; Zhou, Y.; Siddiqui, P.; Niu, J.; Jiang, S. B. Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus. J. Clin Microbiol. 2005, 43 (8), 3718– 3726, DOI: 10.1128/JCM.43.8.3718-3726.2005
-
33He, Y. X.; Zhou, Y.; Wu, H.; Kou, Z. H.; Liu, S. W.; Jiang, S. B. Mapping of Antigenic Sites on the Nucleocapsid Protein of the Severe Acute Respiratory Syndrome Coronavirus. J. Clin Microbiol. 2004, 42 (11), 5309– 5314, DOI: 10.1128/JCM.42.11.5309-5314.2004
-
34Liang, Y. F.; Wan, Y.; Qiu, Li. W.; Zhou, J.; Ni, B.; Guo, B.; Zou, Q.; Zou, L. Y.; Zhou, W.; Jia, Z. C.; Che, X. Y.; Wu, Y. Z. Comprehensive Antibody Epitope Mapping of the Nucleocapsid Protein of Severe Acute Respiratory Syndrome (SARS) Coronavirus: Insight into the Humoral Immunity of SARS. Clin. Chem. 2005, 51 (8), 1382– 1396, DOI: 10.1373/clinchem.2005.051045
-
35Hu, H.; Li, L.; Kao, R. Y.; Kou, B.; Wang, Z.Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library. J. Comb. Chem. 2005, 7, 648– 656, DOI: 10.1021/cc0500607
-
36Tam, J. P. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 5409– 5413, DOI: 10.1073/pnas.85.15.5409
-
37Qin, C.; Wang, J.; Wei, Q.; She, M.; Marasco, W. A.An animal model of SARS produced by infection of Macaca mulatta with SARS coronavirus. J. Pathol. 2005, 206, 251– 259, DOI: 10.1002/path.1769
-
38Wong, S. K.; Li, W.; Moore, M. J.; Choe, H.; Farzan, M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 2003, 279, 3197– 3201, DOI: 10.1074/jbc.C300520200
-
39Li, W.; Zhang, C.; Sui, J.; Kuhn, J. H.; Moore, M. J.Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005, 24, 1634– 1643, DOI: 10.1038/sj.emboj.7600640
-
40Xu, Y.; Zhu, J.; Liu, Y.; Lou, Z.; Yuan, F.Characterization of the heptad repeat regions, HR1 and HR2, and design of a fusion core structure model of the spike protein from severe acute respiratory syndrome (SARS) coronavirus. Biochemistry 2004, 43, 14064– 14071, DOI: 10.1021/bi049101q
-
41Xu, Y.; Lou, Z.; Liu, Y.; Pang, H.; Tien, P.Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J. Biol. Chem. 2004, 279, 49414– 49419, DOI: 10.1074/jbc.M408782200
-
42Wang, S. F.; Tseng, S. P.; Yen, C. H.; Yang, J. Y.; Tsao, C. H.; Shen, C. W.; Chen, K. H.; Liu, F. T.; Liu, W. T.; Chen, Y. M.; Huang, J. C. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem. Biophys. Res. Commun. 2014, 451 (2), 208– 214, DOI: 10.1016/j.bbrc.2014.07.090
-
43Yip, M. S.; Leung, N. H.; Cheung, C. Y.; Li, P. H.; Lee, H. H.; Daëron, M.; Peiris, J. S.; Bruzzone, R.; Jaume, M. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol. J. 2014, 11, 82, DOI: 10.1186/1743-422X-11-82
-
44Jaume, M.; Yip, M. S.; Cheung, C. Y.; Leung, H. L.; Li, P. H.; Kien, F.; Dutry, I.; Callendret, B.; Escriou, N.; Altmeyer, R.; Nal, B.; Daëron, M.; Bruzzone, R.; Peiris, J. S. Anti-Severe Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells via a pH- and Cysteine Protease-Independent FcγR Pathwa. J. Virol. 2011, 85 (20), 10582– 10597, DOI: 10.1128/JVI.00671-11
-
45Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Synthesis of proteins by native chemical ligation. Science 1994, 266, 776– 779, DOI: 10.1126/science.7973629
-
46Ruan, Y. J.; Wei, C. L.; Ee, A. L.; Vega, V. B.; Thoreau, H.; Su, S. T.; Chia, J. M.; Ng, P.; Chiu, K. P.; Lim, L.; Zhang, T.; Peng, C. K.; Lin, E. O.; Lee, N. M.; Yee, S. L.; Ng, L. F.; Chee, R. E.; Stanton, L. W.; Long, P. M.; Liu, E. T. Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 2003, 361 (9371), 1779– 1785, DOI: 10.1016/S0140-6736(03)13414-9
-
47Sakaguchi, N.; Kimura, T.; Matsushita, S.; Fujimura, S.; Shibata, J.Generation of High-Affinity Antibody against T Cell-Dependent Antigen in the Ganp Gene-Transgenic Mouse. J. Immunol. 2005, 174, 4485– 4494, DOI: 10.4049/jimmunol.174.8.4485
-
48Kuwahara, K.; Yoshida, M.; Kondo, E.; Sakata, A.; Watanabe, Y.A novel nuclear phosphoprotein, GANP, is up-regulated in centrocytes of the germinal center and associated with MCM3, a protein essential for DNA replication. Blood 2000, 95, 2321– 2328
-
49Jönsson, U. Real-time biospecific interaction analysis using surface plasmon resonance and sensor chip technology. BioTechniques 1991, 11, 620– 627
-
50Johnsson, B.; Löfas, S.; Lindquist, G. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal. Biochem. 1991, 198, 268– 277, DOI: 10.1016/0003-2697(91)90424-R
-
51Karlsson, R.; Michaelsson, A.; Mattsson, L. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J. Immunol. Methods 1991, 145, 229– 240, DOI: 10.1016/0022-1759(91)90331-9
Cited By
This article is cited by 158 publications.
- Oscar A. Ortega-Rivera, Sourabh Shukla, Matthew D. Shin, Angela Chen, Veronique Beiss, Miguel A. Moreno-Gonzalez, Yi Zheng, Alex E. Clark, Aaron F. Carlin, Jonathan K. Pokorski, Nicole F. Steinmetz. Cowpea Mosaic Virus Nanoparticle Vaccine Candidates Displaying Peptide Epitopes Can Neutralize the Severe Acute Respiratory Syndrome Coronavirus. ACS Infectious Diseases 2021, Article ASAP.
- Oscar A. Ortega-Rivera, Matthew D. Shin, Angela Chen, Veronique Beiss, Miguel A. Moreno-Gonzalez, Miguel A. Lopez-Ramirez, Maria Reynoso, Hong Wang, Brett L. Hurst, Joseph Wang, Jonathan K. Pokorski, Nicole F. Steinmetz. Trivalent Subunit Vaccine Candidates for COVID-19 and Their Delivery Devices. Journal of the American Chemical Society 2021, 143 (36) , 14748-14765. https://doi.org/10.1021/jacs.1c06600
- Jennifer L. Remmel, Kathryn S. Beauchemin, Akaash K. Mishra, Julia C. Frei, Jonathan R. Lai, Chris Bailey-Kellogg, Margaret E. Ackerman. Combinatorial Resurfacing of Dengue Envelope Protein Domain III Antigens Selectively Ablates Epitopes Associated with Serotype-Specific or Infection-Enhancing Antibody Responses. ACS Combinatorial Science 2020, 22 (9) , 446-456. https://doi.org/10.1021/acscombsci.0c00073
- M.J. Garcia-Soto, S.I. Farfan-Castro, A. Wong-Arce, A. Romero-Maldonado, O. Gonzalez-Ortega, S. Rosales-Mendoza. Particulate vaccines against SARS-CoV-2. 2022,,, 153-171. https://doi.org/10.1016/B978-0-323-90248-9.00009-7
- Cheolmin Kim, Dong-Kyun Ryu, Jihun Lee, Young-Il Kim, Ji-Min Seo, Yeon-Gil Kim, Jae-Hee Jeong, Minsoo Kim, Jong-In Kim, Pankyeom Kim, Jin Soo Bae, Eun Yeong Shim, Min Seob Lee, Man Su Kim, Hanmi Noh, Geun-Soo Park, Jae Sang Park, Dain Son, Yongjin An, Jeong No Lee, Ki-Sung Kwon, Joo-Yeon Lee, Hansaem Lee, Jeong-Sun Yang, Kyung-Chang Kim, Sung Soon Kim, Hye-Min Woo, Jun-Won Kim, Man-Seong Park, Kwang-Min Yu, Se-Mi Kim, Eun-Ha Kim, Su-Jin Park, Seong Tae Jeong, Chi Ho Yu, Youngjo Song, Se Hun Gu, Hanseul Oh, Bon-Sang Koo, Jung Joo Hong, Choong-Min Ryu, Wan Beom Park, Myoung-don Oh, Young Ki Choi, Soo-Young Lee. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20602-5
- Mayank Batra, Runxia Tian, Chongxu Zhang, Emile Clarence, Camila Sofia Sacher, Justin Nestor Miranda, Justin Rafa O. De La Fuente, Megan Mathew, Desmond Green, Sayari Patel, Maria Virginia Perez Bastidas, Sara Haddadi, Mukunthan Murthi, Miguel Santiago Gonzalez, Shweta Kambali, Kayo H. M. Santos, Huda Asif, Farzaneh Modarresi, Mohammad Faghihi, Mehdi Mirsaeidi. Role of IgG against N-protein of SARS-CoV2 in COVID19 clinical outcomes. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-83108-0
- Calvin P. Sjaarda, Nazneen Rustom, Gerald A. Evans, David Huang, Santiago Perez-Patrigeon, Melissa L. Hudson, Henry Wong, Zhengxin Sun, T. Hugh Guan, Muhammad Ayub, Claudio N. Soares, Robert I. Colautti, Prameet M. Sheth. Phylogenomics reveals viral sources, transmission, and potential superinfection in early-stage COVID-19 patients in Ontario, Canada. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-83355-1
- Guillermo León, María Herrera, Mariángela Vargas, Mauricio Arguedas, Andrés Sánchez, Álvaro Segura, Aarón Gómez, Gabriela Solano, Eugenia Corrales-Aguilar, Kenneth Risner, Aarthi Narayanan, Charles Bailey, Mauren Villalta, Andrés Hernández, Adriana Sánchez, Daniel Cordero, Daniela Solano, Gina Durán, Eduardo Segura, Maykel Cerdas, Deibid Umaña, Edwin Moscoso, Ricardo Estrada, Jairo Gutiérrez, Marcos Méndez, Ana Cecilia Castillo, Laura Sánchez, Ronald Sánchez, José María Gutiérrez, Cecilia Díaz, Alberto Alape. Development and characterization of two equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-89242-z
- Qingrui Huang, Kai Ji, Siyu Tian, Fengze Wang, Baoying Huang, Zhou Tong, Shuguang Tan, Junfeng Hao, Qihui Wang, Wenjie Tan, George F. Gao, Jinghua Yan. A single-dose mRNA vaccine provides a long-term protection for hACE2 transgenic mice from SARS-CoV-2. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21037-2
- Han Cao, Shengran Yang, Yunfei Wang, Ning Luan, Xingxiao Yin, Kangyang Lin, Cunbao Liu. An Established Th2-Oriented Response to an Alum-Adjuvanted SARS-CoV-2 Subunit Vaccine Is Not Reversible by Sequential Immunization with Nucleic Acid-Adjuvanted Th1-Oriented Subunit Vaccines. Vaccines 2021, 9 (11) , 1261. https://doi.org/10.3390/vaccines9111261
- David Camerini, Arlo Z. Randall, Krista Trappl-Kimmons, Amit Oberai, Christopher Hung, Joshua Edgar, Adam Shandling, Vu Huynh, Andy A. Teng, Gary Hermanson, Jozelyn V. Pablo, Megan M. Stumpf, Sandra N. Lester, Jennifer Harcourt, Azaibi Tamin, Mohammed Rasheed, Natalie J. Thornburg, Panayampalli S. Satheshkumar, Xiaowu Liang, Richard B. Kennedy, Angela Yee, Michael Townsend, Joseph J. Campo, . Mapping SARS-CoV-2 Antibody Epitopes in COVID-19 Patients with a Multi-Coronavirus Protein Microarray. Microbiology Spectrum 2021, 9 (2) https://doi.org/10.1128/Spectrum.01416-21
- Kirk Hofman, Gautam N. Shenoy, Vincent Chak, Sathy V. Balu-Iyer. Pharmaceutical Aspects and Clinical Evaluation of COVID-19 Vaccines. Immunological Investigations 2021, 50 (7) , 743-779. https://doi.org/10.1080/08820139.2021.1904977
- Isaac Quiros-Fernandez, Mansour Poorebrahim, Elham Fakhr, Angel Cid-Arregui. Immunogenic T cell epitopes of SARS-CoV-2 are recognized by circulating memory and naïve CD8 T cells of unexposed individuals. EBioMedicine 2021, 72 , 103610. https://doi.org/10.1016/j.ebiom.2021.103610
- Kuandyk Zhugunissov, Kunsulu Zakarya, Berik Khairullin, Mukhit Orynbayev, Yergali Abduraimov, Markhabat Kassenov, Kulyaisan Sultankulova, Aslan Kerimbayev, Sergazy Nurabayev, Balzhan Myrzakhmetova, Aziz Nakhanov, Ainur Nurpeisova, Olga Chervyakova, Nurika Assanzhanova, Yerbol Burashev, Muratbay Mambetaliyev, Moldir Azanbekova, Syrym Kopeyev, Nurlan Kozhabergenov, Aisha Issabek, Moldir Tuyskanova, Lespek Kutumbetov. Development of the Inactivated QazCovid-in Vaccine: Protective Efficacy of the Vaccine in Syrian Hamsters. Frontiers in Microbiology 2021, 12 https://doi.org/10.3389/fmicb.2021.720437
- Yassine Taoufik, Marie-Ghislaine de Goër de Herve, Stéphanie Corgnac, Antoine Durrbach, Fathia Mami-Chouaib. When Immunity Kills: The Lessons of SARS-CoV-2 Outbreak. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.692598
- Kevin R. Bewley, Karen Gooch, Kelly M. Thomas, Stephanie Longet, Nathan Wiblin, Laura Hunter, Kin Chan, Phillip Brown, Rebecca A. Russell, Catherine Ho, Gillian Slack, Holly E. Humphries, Leonie Alden, Lauren Allen, Marilyn Aram, Natalie Baker, Emily Brunt, Rebecca Cobb, Susan Fotheringham, Debbie Harris, Chelsea Kennard, Stephanie Leung, Kathryn Ryan, Howard Tolley, Nadina Wand, Andrew White, Laura Sibley, Charlotte Sarfas, Geoff Pearson, Emma Rayner, Xiaochao Xue, Teresa Lambe, Sue Charlton, Sarah Gilbert, Quentin J. Sattentau, Fergus Gleeson, Yper Hall, Simon Funnell, Sally Sharpe, Francisco J. Salguero, Andrew Gorringe, Miles Carroll. Immunological and pathological outcomes of SARS-CoV-2 challenge following formalin-inactivated vaccine in ferrets and rhesus macaques. Science Advances 2021, 7 (37) https://doi.org/10.1126/sciadv.abg7996
- Alessandra Mallano, Alessandro Ascione, Michela Flego. Antibody Response against SARS-CoV-2 Infection: Implications for Diagnosis, Treatment and Vaccine Development. International Reviews of Immunology 2021, 8 , 1-21. https://doi.org/10.1080/08830185.2021.1929205
- Evgeny Knyazev, Stepan Nersisyan, Alexander Tonevitsky. Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.636966
- Manuel E. Patarroyo, Manuel A. Patarroyo, Martha P. Alba, Laura Pabon, María T. Rugeles, Wbeimar Aguilar-Jimenez, Lizdany Florez, Adriana Bermudez, Ashok K. Rout, Christian Griesinger, Carlos F. Suarez, Jorge Aza-Conde, César Reyes, Catalina Avendaño, Jhoan Samacá, Anny Camargo, Yolanda Silva, Martha Forero, Edgardo Gonzalez. The First Chemically-Synthesised, Highly Immunogenic Anti-SARS-CoV-2 Peptides in DNA Genotyped Aotus Monkeys for Human Use. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.724060
- Ferhat Arslan, Handan Ankaralı. Sars-Cov-2 virus and vaccination; biological and statistical framework. Expert Review of Vaccines 2021, 20 (9) , 1059-1063. https://doi.org/10.1080/14760584.2021.1965884
- Wenyang Jing, Erik Procko. ACE2‐based decoy receptors for SARS coronavirus 2. Proteins: Structure, Function, and Bioinformatics 2021, 89 (9) , 1065-1078. https://doi.org/10.1002/prot.26140
- Scott B. Halstead. Vaccine-Associated Enhanced Viral Disease: Implications for Viral Vaccine Development. BioDrugs 2021, 35 (5) , 505-515. https://doi.org/10.1007/s40259-021-00495-6
- Keshav S. Moharir, Sumit K. Arora, Subhash R. Yende, Govind K. Lohiya, Sapan K. Shah. Challenges and Progress in Vaccine Development for COVID-19 Coronavirus (SARS-CoV-2): A Review. The Open COVID Journal 2021, 1 (1) , 65-76. https://doi.org/10.2174/2666958702101010065
- Siguna Mueller. Rarely Recognized Antibody Diversification in Covid-19 Evolution to Counteract Advanced SARS-CoV-2 Evasion Strategies, and Implications for Prophylactic Treatment. Frontiers in Physiology 2021, 12 https://doi.org/10.3389/fphys.2021.624675
- Sandro Halwe, Alexandra Kupke, Kanika Vanshylla, Falk Liberta, Henning Gruell, Matthias Zehner, Cornelius Rohde, Verena Krähling, Michelle Gellhorn Serra, Christoph Kreer, Michael Klüver, Lucie Sauerhering, Jörg Schmidt, Zheng Cai, Fei Han, David Young, Guangwei Yang, Marek Widera, Manuel Koch, Anke Werner, Lennart Kämper, Nico Becker, Michael S. Marlow, Markus Eickmann, Sandra Ciesek, Felix Schiele, Florian Klein, Stephan Becker. Intranasal Administration of a Monoclonal Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. Viruses 2021, 13 (8) , 1498. https://doi.org/10.3390/v13081498
- Dapeng Li, Robert J. Edwards, Kartik Manne, David R. Martinez, Alexandra Schäfer, S. Munir Alam, Kevin Wiehe, Xiaozhi Lu, Robert Parks, Laura L. Sutherland, Thomas H. Oguin, Charlene McDanal, Lautaro G. Perez, Katayoun Mansouri, Sophie M.C. Gobeil, Katarzyna Janowska, Victoria Stalls, Megan Kopp, Fangping Cai, Esther Lee, Andrew Foulger, Giovanna E. Hernandez, Aja Sanzone, Kedamawit Tilahun, Chuancang Jiang, Longping V. Tse, Kevin W. Bock, Mahnaz Minai, Bianca M. Nagata, Kenneth Cronin, Victoria Gee-Lai, Margaret Deyton, Maggie Barr, Tarra Von Holle, Andrew N. Macintyre, Erica Stover, Jared Feldman, Blake M. Hauser, Timothy M. Caradonna, Trevor D. Scobey, Wes Rountree, Yunfei Wang, M. Anthony Moody, Derek W. Cain, C. Todd DeMarco, Thomas N. Denny, Christopher W. Woods, Elizabeth W. Petzold, Aaron G. Schmidt, I-Ting Teng, Tongqing Zhou, Peter D. Kwong, John R. Mascola, Barney S. Graham, Ian N. Moore, Robert Seder, Hanne Andersen, Mark G. Lewis, David C. Montefiori, Gregory D. Sempowski, Ralph S. Baric, Priyamvada Acharya, Barton F. Haynes, Kevin O. Saunders. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell 2021, 184 (16) , 4203-4219.e32. https://doi.org/10.1016/j.cell.2021.06.021
- Ahmed O. Shalash, Waleed M. Hussein, Mariusz Skwarczynski, Istvan Toth. Key Considerations for the Development of Safe and Effective SARS‐CoV‐2 Subunit Vaccine: A Peptide‐Based Vaccine Alternative. Advanced Science 2021, 8 (16) , 2100985. https://doi.org/10.1002/advs.202100985
- Maya Madhavan, Lamya A. AlOmair, Deepthi KS, Sabeena Mustafa. Exploring peptide studies related to SARS-CoV to accelerate the development of novel therapeutic and prophylactic solutions against COVID-19. Journal of Infection and Public Health 2021, 14 (8) , 1106-1119. https://doi.org/10.1016/j.jiph.2021.06.017
- Sujan Chatterjee, Snehasis Mishra, Kaustav Dutta Chowdhury, Chandan Kumar Ghosh, Krishna Das Saha. Various theranostics and immunization strategies based on nanotechnology against Covid-19 pandemic: An interdisciplinary view. Life Sciences 2021, 278 , 119580. https://doi.org/10.1016/j.lfs.2021.119580
- Rafael Bayarri-Olmos, Manja Idorn, Anne Rosbjerg, Laura Pérez-Alós, Cecilie Bo Hansen, Laust Bruun Johnsen, Charlotte Helgstrand, Franziska Zosel, Jais Rose Bjelke, Fredrik Kryh Öberg, Max Søgaard, Søren R. Paludan, Theresa Bak-Thomsen, Joseph G. Jardine, Mikkel-Ole Skjoedt, Peter Garred. SARS-CoV-2 Neutralizing Antibody Responses towards Full-Length Spike Protein and the Receptor-Binding Domain. The Journal of Immunology 2021, , ji2100272. https://doi.org/10.4049/jimmunol.2100272
- Vladimir Naumov, Evgeny Putin, Stefan Pushkov, Ekaterina Kozlova, Konstantin Romantsov, Alexander Kalashnikov, Fedor Galkin, Nina Tihonova, Anastasia Shneyderman, Egor Galkin, Arsenii Zinkevich, Stephanie M. Cope, Ramanathan Sethuraman, Tudor I. Oprea, Alexander T. Pearson, Savas Tay, Nishant Agrawal, Alexey Dubovenko, Quentin Vanhaelen, Ivan Ozerov, Alex Aliper, Evgeny Izumchenko, Alex Zhavoronkov, . COVIDomic: A multi-modal cloud-based platform for identification of risk factors associated with COVID-19 severity. PLOS Computational Biology 2021, 17 (7) , e1009183. https://doi.org/10.1371/journal.pcbi.1009183
- Zahra Khoshkam, Younes Aftabi, Peter Stenvinkel, B. Paige Lawrence, Mehran Habibi Rezaei, Gaku Ichihara, Sasan Fereidouni. Recovery scenario and immunity in COVID-19 disease: A new strategy to predict the potential of reinfection. Journal of Advanced Research 2021, 31 , 49-60. https://doi.org/10.1016/j.jare.2020.12.013
- Ralf Wagner, Eberhard Hildt, Elena Grabski, Yuansheng Sun, Heidi Meyer, Annette Lommel, Brigitte Keller-Stanislawski, Jan Müller-Berghaus, Klaus Cichutek. Accelerated Development of COVID-19 Vaccines: Technology Platforms, Benefits, and Associated Risks. Vaccines 2021, 9 (7) , 747. https://doi.org/10.3390/vaccines9070747
- Wen-Hsiang Chen, Junfei Wei, Rakhi Tyagi Kundu, Rakesh Adhikari, Zhuyun Liu, Jungsoon Lee, Leroy Versteeg, Cristina Poveda, Brian Keegan, Maria Jose Villar, Ana C. de Araujo Leao, Joanne Altieri Rivera, Portia M. Gillespie, Jeroen Pollet, Ulrich Strych, Bin Zhan, Peter J. Hotez, Maria Elena Bottazzi. Genetic modification to design a stable yeast-expressed recombinant SARS-CoV-2 receptor binding domain as a COVID-19 vaccine candidate. Biochimica et Biophysica Acta (BBA) - General Subjects 2021, 1865 (6) , 129893. https://doi.org/10.1016/j.bbagen.2021.129893
- Ahmed S. Abdel-Moneim, Elsayed M. Abdelwhab, Ziad A. Memish. Insights into SARS-CoV-2 evolution, potential antivirals, and vaccines. Virology 2021, 558 , 1-12. https://doi.org/10.1016/j.virol.2021.02.007
- Pratik Talukder, Sounak Chanda. RNAi Technology and Investigation on Possible Vaccines to Combat SARS-CoV-2 Infection. Applied Biochemistry and Biotechnology 2021, 193 (6) , 1744-1756. https://doi.org/10.1007/s12010-021-03548-2
- Peter C. Taylor, Andrew C. Adams, Matthew M. Hufford, Inmaculada de la Torre, Kevin Winthrop, Robert L. Gottlieb. Neutralizing monoclonal antibodies for treatment of COVID-19. Nature Reviews Immunology 2021, 21 (6) , 382-393. https://doi.org/10.1038/s41577-021-00542-x
- Atil Bisgin, Ahter D. Sanlioglu, Yunus Emre Eksi, Thomas S. Griffith, Salih Sanlioglu. Current Update on Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Development with a Special Emphasis on Gene Therapy Viral Vector Design and Construction for Vaccination. Human Gene Therapy 2021, 32 (11-12) , 541-562. https://doi.org/10.1089/hum.2021.052
- Vikrant Singh Rajput, Ritika Sharma, Anchala Kumari, Nidhi Vyas, Vijay Prajapati, Abhinav Grover. Engineering a multi epitope vaccine against SARS-CoV-2 by exploiting its non structural and structural proteins. Journal of Biomolecular Structure and Dynamics 2021, 393 , 1-18. https://doi.org/10.1080/07391102.2021.1924265
- Ralf Wagner, Juliane Meißner, Elena Grabski, Yuansheng Sun, Stefan Vieths, Eberhard Hildt. Regulatory concepts to guide and promote the accelerated but safe clinical development and licensure of COVID‐19 vaccines in Europe. Allergy 2021, 5 https://doi.org/10.1111/all.14868
- Wei Zhan, Manish Muhuri, Phillip W. L. Tai, Guangping Gao. Vectored Immunotherapeutics for Infectious Diseases: Can rAAVs Be The Game Changers for Fighting Transmissible Pathogens?. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.673699
- Masarra M. Sakr, Noha S. Elsayed, Ghadir S. El-Housseiny. Latest updates on SARS-CoV-2 genomic characterization, drug, and vaccine development; a comprehensive bioinformatics review. Microbial Pathogenesis 2021, 154 , 104809. https://doi.org/10.1016/j.micpath.2021.104809
- Jubeda Begum, Nasir Akbar Mir, Kapil Dev, Bidyarani Buyamayum, Mohd Yaqoob Wani, Meesam Raza. Challenges and prospects of COVID‐19 vaccine development based on the progress made in SARS and MERS vaccine development. Transboundary and Emerging Diseases 2021, 68 (3) , 1111-1124. https://doi.org/10.1111/tbed.13804
- Donald Forthal. Adaptive immune responses to SARS-CoV-2. Advanced Drug Delivery Reviews 2021, 172 , 1-8. https://doi.org/10.1016/j.addr.2021.02.009
- Rebecca T Veenhuis, Caroline J Zeiss. Animal Models of COVID-19 II. Comparative Immunology. ILAR Journal 2021, 395 https://doi.org/10.1093/ilar/ilab010
- Alexandru A. Hennrich, Bevan Sawatsky, Rosalía Santos-Mandujano, Dominic H. Banda, Martina Oberhuber, Anika Schopf, Verena Pfaffinger, Kevin Wittwer, Christiane Riedel, Christian K. Pfaller, Karl-Klaus Conzelmann, . Safe and effective two-in-one replicon-and-VLP minispike vaccine for COVID-19: Protection of mice after a single immunization. PLOS Pathogens 2021, 17 (4) , e1009064. https://doi.org/10.1371/journal.ppat.1009064
- Aleksandr B. Ryzhikov, Evgenii А. Ryzhikov, Marina P. Bogryantseva, Elena D. Danilenko, Ilnaz R. Imatdinov, Elena A. Nechaeva, Oleg V. Pyankov, Olga G. Pyankova, Ivan M. Susloparov, Oleg S. Taranov, Andrei S. Gudymo, Natalya V. Danilchenko, Ekaterina S. Sleptsova, Sergei A. Bodnev, Galina S. Onkhonova, Vladimir N. Petrov, Anastasiya A. Moiseeva, Polina Y. Torzhkova, Stepan A. Pyankov, Tatyana V. Tregubchak, Denis V. Antonets, Elena V. Gavrilova, Rinat A. Maksyutov. Immunogenicity and protectivity of the peptide vaccine against SARS-CoV-2. Annals of the Russian academy of medical sciences 2021, 76 (1) , 5-19. https://doi.org/10.15690/vramn1528
- Emelissa J. Valcourt, Kathy Manguiat, Alyssia Robinson, Julie Chih-Yu Chen, Kristina Dimitrova, Clark Philipson, Lise Lamoureux, Elizabeth McLachlan, Zachary Schiffman, Michael A. Drebot, Heidi Wood. Evaluation of a commercially-available surrogate virus neutralization test for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Diagnostic Microbiology and Infectious Disease 2021, 99 (4) , 115294. https://doi.org/10.1016/j.diagmicrobio.2020.115294
- Yong Bok Seo, You Suk Suh, Ji In Ryu, Hwanhee Jang, Hanseul Oh, Bon-Sang Koo, Sang-Hwan Seo, Jung Joo Hong, Manki Song, Sung-Joo Kim, Young Chul Sung. Soluble Spike DNA Vaccine Provides Long-Term Protective Immunity against SARS-CoV-2 in Mice and Nonhuman Primates. Vaccines 2021, 9 (4) , 307. https://doi.org/10.3390/vaccines9040307
- Divya Mishra, Gurparsad Singh Suri, Gurleen Kaur, Manish Tiwari. Comparative insight into the genomic landscape of SARS‐CoV‐2 and identification of mutations associated with the origin of infection and diversity. Journal of Medical Virology 2021, 93 (4) , 2406-2419. https://doi.org/10.1002/jmv.26744
- Francesco Blasi, Andrea Gramegna, Giovanni Sotgiu, Laura Saderi, Antonio Voza, Stefano Aliberti, Francesco Amati. SARS-CoV-2 vaccines: A critical perspective through efficacy data and barriers to herd immunity. Respiratory Medicine 2021, 180 , 106355. https://doi.org/10.1016/j.rmed.2021.106355
- Xiaoling Qiang, Shu Zhu, Jianhua Li, Weiqiang Chen, Huan Yang, Ping Wang, Kevin J. Tracey, Haichao Wang. Monoclonal antibodies capable of binding SARS‐CoV‐2 spike protein receptor‐binding motif specifically prevent GM‐CSF induction. Journal of Leukocyte Biology 2021, https://doi.org/10.1002/JLB.3COVCRA0920-628RR
- A. B. Ryzhikov, Е. А. Ryzhikov, M. P. Bogryantseva, S. V. Usova, E. D. Danilenko, E. A. Nechaeva, O. V. Pyankov, O. G. Pyankova, A. S. Gudymo, S. A. Bodnev, G. S. Onkhonova, E. S. Sleptsova, V. I. Kuzubov, N. N. Ryndyuk, Z. I. Ginko, V. N. Petrov, A. A. Moiseeva, P. Yu. Torzhkova, S. A. Pyankov, T. V. Tregubchak, D. V. Antonec, E. V. Gavrilova, R. A. Maksyutov. A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” Vaccine for the prevention of COVID-19, in volunteers aged 18–60 years (phase I–II). Russian Journal of Infection and Immunity 2021, 11 (2) , 283-296. https://doi.org/10.15789/2220-7619-ASB-1699
- Muthu Kumaradoss Kathiravan, Srimathi Radhakrishnan, Vigneshwaran Namasivayam, Senthilkumar Palaniappan. An Overview of Spike Surface Glycoprotein in Severe Acute Respiratory Syndrome–Coronavirus. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.637550
- N. А. Alpatova, Zh. I. Avdeeva, S. L. Lysikova, O. V. Golovinskaya, L. A. Gayderova, V. P. Bondarev. General characteristics of adjuvants and their mechanisms of action (part 2). BIOpreparations. Prevention, Diagnosis, Treatment 2021, 21 (1) , 20-30. https://doi.org/10.30895/2221-996X-2021-21-1-20-30
- Manna Zhang, Lin Li, Ma Luo, Binhua Liang, . Genomic characterization and evolution of SARS-CoV-2 of a Canadian population. PLOS ONE 2021, 16 (3) , e0247799. https://doi.org/10.1371/journal.pone.0247799
- Ping-Han Huang, Hsiao-Han Tsai, Bo-Hung Liao, Yi-Ling Lin, Jia-Tsrong Jan, Mi-Hua Tao, Yu-Chi Chou, Che-Ming Jack Hu, Hui-Wen Chen. Neutralizing antibody response elicited by SARS-CoV-2 receptor-binding domain. Human Vaccines & Immunotherapeutics 2021, 17 (3) , 654-655. https://doi.org/10.1080/21645515.2020.1814098
- Timothy Cardozo, Ronald Veazey. Informed consent disclosure to vaccine trial subjects of risk of COVID‐19 vaccines worsening clinical disease. International Journal of Clinical Practice 2021, 75 (3) https://doi.org/10.1111/ijcp.13795
- Shan Su, Lanying Du, Shibo Jiang. Learning from the past: development of safe and effective COVID-19 vaccines. Nature Reviews Microbiology 2021, 19 (3) , 211-219. https://doi.org/10.1038/s41579-020-00462-y
- Priyanka Dash, Subhashree Mohapatra, Sayantan Ghosh, Bismita Nayak. A Scoping Insight on Potential Prophylactics, Vaccines and Therapeutic Weaponry for the Ongoing Novel Coronavirus (COVID-19) Pandemic- A Comprehensive Review. Frontiers in Pharmacology 2021, 11 https://doi.org/10.3389/fphar.2020.590154
- Darrell O. Ricke. Two Different Antibody-Dependent Enhancement (ADE) Risks for SARS-CoV-2 Antibodies. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.640093
- A. V. Ershov, V. D. Surova, V. T. Dolgikh, T. I. Dolgikh. Cytokine Storm in the Novel Coronavirus Infection and Methods of its Correction. Antibiotics and Chemotherapy 2021, 65 (11-12) , 27-37. https://doi.org/10.37489/0235-2990-2020-65-11-12-27-37
- Lianpan Dai, George F. Gao. Viral targets for vaccines against COVID-19. Nature Reviews Immunology 2021, 21 (2) , 73-82. https://doi.org/10.1038/s41577-020-00480-0
- Yunfei Wang, Lichun Wang, Han Cao, Cunbao Liu. SARS‐CoV‐2 S1 is superior to the RBD as a COVID‐19 subunit vaccine antigen. Journal of Medical Virology 2021, 93 (2) , 892-898. https://doi.org/10.1002/jmv.26320
- Camilla Servidio, Francesco Stellacci. Therapeutic approaches against coronaviruses acute respiratory syndrome. Pharmacology Research & Perspectives 2021, 9 (1) https://doi.org/10.1002/prp2.691
- Savannah E. Butler, Andrew R. Crowley, Harini Natarajan, Shiwei Xu, Joshua A. Weiner, Carly A. Bobak, Daniel E. Mattox, Jiwon Lee, Wendy Wieland-Alter, Ruth I. Connor, Peter F. Wright, Margaret E. Ackerman. Distinct Features and Functions of Systemic and Mucosal Humoral Immunity Among SARS-CoV-2 Convalescent Individuals. Frontiers in Immunology 2021, 11 https://doi.org/10.3389/fimmu.2020.618685
- Shengli Xia, Yuntao Zhang, Yanxia Wang, Hui Wang, Yunkai Yang, George Fu Gao, Wenjie Tan, Guizhen Wu, Miao Xu, Zhiyong Lou, Weijin Huang, Wenbo Xu, Baoying Huang, Huijuan Wang, Wei Wang, Wei Zhang, Na Li, Zhiqiang Xie, Ling Ding, Wangyang You, Yuxiu Zhao, Xuqin Yang, Yang Liu, Qian Wang, Lili Huang, Yongli Yang, Guangxue Xu, Bojian Luo, Wenling Wang, Peipei Liu, Wanshen Guo, Xiaoming Yang. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. The Lancet Infectious Diseases 2021, 21 (1) , 39-51. https://doi.org/10.1016/S1473-3099(20)30831-8
- Jorge Carrillo, Nuria Izquierdo-Useros, Carlos Ávila-Nieto, Edwards Pradenas, Bonaventura Clotet, Julià Blanco. Humoral immune responses and neutralizing antibodies against SARS-CoV-2; implications in pathogenesis and protective immunity. Biochemical and Biophysical Research Communications 2021, 538 , 187-191. https://doi.org/10.1016/j.bbrc.2020.10.108
- Bianza Moise Bakadia, Feng He, Tiatou Souho, Lallepak Lamboni, Muhammad Wajid Ullah, Biaou Ode Boni, Abeer Ahmed Qaed Ahmed, Biampata Mutu Mukole, Guang Yang. Prevention and treatment of COVID-19: Focus on interferons, chloroquine/hydroxychloroquine, azithromycin, and vaccine. Biomedicine & Pharmacotherapy 2021, 133 , 111008. https://doi.org/10.1016/j.biopha.2020.111008
- Takehiro Ura, Akio Yamashita, Nobuhisa Mizuki, Kenji Okuda, Masaru Shimada. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine 2021, 39 (2) , 197-201. https://doi.org/10.1016/j.vaccine.2020.11.054
- Ankur Singh. Eliciting B cell immunity against infectious diseases using nanovaccines. Nature Nanotechnology 2021, 16 (1) , 16-24. https://doi.org/10.1038/s41565-020-00790-3
- Srikanth Umakanthan, Vijay Kumar Chattu, Anu V Ranade, Debasmita Das, Abhishekh Basavarajegowda, Maryann Bukelo, , , , , , , . A rapid review of recent advances in diagnosis, treatment and vaccination for COVID-19. AIMS Public Health 2021, 8 (1) , 137-153. https://doi.org/10.3934/publichealth.2021011
- Jaewoo Hong, Hyunjhung Jhun, Yeo-Ok Choi, Afeisha S. Taitt, Suyoung Bae, Youngmin Lee, Chang-seon Song, Su Cheong Yeom, Soohyun Kim. Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target. Immune Network 2021, 21 (1) https://doi.org/10.4110/in.2021.21.e8
- Manisha Pandey, Victoria Ozberk, Sharareh Eskandari, Ahmed O Shalash, Michael A Joyce, Holly A Saffran, Christopher J Day, Ailin Lepletier, Belinda L Spillings, Jamie‐Lee Mills, Ainslie Calcutt, Fan Fan, James T Williams, Danielle I Stanisic, Laetitia Hattingh, John Gerrard, Mariusz Skwarczynski, Johnson Mak, Michael P Jennings, Istvan Toth, D Lorne Tyrrell, Michael F Good. Antibodies to neutralising epitopes synergistically block the interaction of the receptor‐binding domain of SARS‐CoV‐2 to ACE 2. Clinical & Translational Immunology 2021, 10 (3) https://doi.org/10.1002/cti2.1260
- Jiong Wang, Martin S. Zand. The potential for antibody-dependent enhancement of SARS-CoV-2 infection: Translational implications for vaccine development. Journal of Clinical and Translational Science 2021, 5 (1) https://doi.org/10.1017/cts.2020.39
- Simone A. Thair, Yudong D. He, Yehudit Hasin-Brumshtein, Suraj Sakaram, Rushika Pandya, Jiaying Toh, David Rawling, Melissa Remmel, Sabrina Coyle, George N. Dalekos, Ioannis Koutsodimitropoulos, Glykeria Vlachogianni, Eleni Gkeka, Eleni Karakike, Georgia Damoraki, Nikolaos Antonakos, Purvesh Khatri, Evangelos J. Giamarellos-Bourboulis, Timothy E. Sweeney. Transcriptomic similarities and differences in host response between SARS-CoV-2 and other viral infections. iScience 2021, 24 (1) , 101947. https://doi.org/10.1016/j.isci.2020.101947
- Fataneh Fatemi, Zahra Hassani Nejad, Seyed Ehsan Ranaei Siadat. Vaccine Development and Immune Responses in COVID-19: Lessons from the Past. 2021,,, 149-185. https://doi.org/10.1007/978-981-16-3108-5_5
- Himadri Nath, Abinash Mallick, Subrata Roy, Soumi Sukla, Subhajit Biswas. Computational modelling supports that dengue virus envelope antibodies can bind to SARS-CoV-2 receptor binding sites: Is pre-exposure to dengue virus protective against COVID-19 severity?. Computational and Structural Biotechnology Journal 2021, 19 , 459-466. https://doi.org/10.1016/j.csbj.2020.12.037
- Wai-Yim Ching, Puja Adhikari, Bahaa Jawad, Rudolf Podgornik. Ultra-large-scale ab initio quantum chemical computation of bio-molecular systems: The case of spike protein of SARS-CoV-2 virus. Computational and Structural Biotechnology Journal 2021, 19 , 1288-1301. https://doi.org/10.1016/j.csbj.2021.02.004
- Jolanta Bratosiewicz-Wąsik, Tomasz J. Wąsik. CORONAVIRUSES – HOW PROTEIN INTERACTIONS CHANGED OUR PERCEPTION OF THE WORLD. Postępy Mikrobiologii - Advancements of Microbiology 2021, 60 (2) , 121-135. https://doi.org/10.21307/PM-2019.60.2.10
- Lele Xu, Zhiqian Ma, Yang Li, Zhaoxia Pang, Shuqi Xiao. Antibody dependent enhancement: Unavoidable problems in vaccine development. 2021,,, 99-133. https://doi.org/10.1016/bs.ai.2021.08.003
- Jacob D. Galson, Sebastian Schaetzle, Rachael J. M. Bashford-Rogers, Matthew I. J. Raybould, Aleksandr Kovaltsuk, Gavin J. Kilpatrick, Ralph Minter, Donna K. Finch, Jorge Dias, Louisa K. James, Gavin Thomas, Wing-Yiu Jason Lee, Jason Betley, Olivia Cavlan, Alex Leech, Charlotte M. Deane, Joan Seoane, Carlos Caldas, Daniel J. Pennington, Paul Pfeffer, Jane Osbourn. Deep Sequencing of B Cell Receptor Repertoires From COVID-19 Patients Reveals Strong Convergent Immune Signatures. Frontiers in Immunology 2020, 11 https://doi.org/10.3389/fimmu.2020.605170
- Andrea D. Branch. How to Survive COVID‐19 Even If the Vaccine Fails. Hepatology Communications 2020, 4 (12) , 1864-1879. https://doi.org/10.1002/hep4.1588
- Mahnaz Ghaebi, Abdolreza Osali, Hamed Valizadeh, Leila Roshangar, Majid Ahmadi. Vaccine development and therapeutic design for 2019‐nCoV/SARS‐CoV‐2: Challenges and chances. Journal of Cellular Physiology 2020, 235 (12) , 9098-9109. https://doi.org/10.1002/jcp.29771
- Ligong Lu, Hui Zhang, Meixiao Zhan, Jun Jiang, Hua Yin, Danielle J. Dauphars, Shi-You Li, Yong Li, You-Wen He. Antibody response and therapy in COVID-19 patients: what can be learned for vaccine development?. Science China Life Sciences 2020, 63 (12) , 1833-1849. https://doi.org/10.1007/s11427-020-1859-y
- Nevio Cimolai. Applying Immune Instincts and Maternal Intelligence from Comparative Microbiology to COVID-19. SN Comprehensive Clinical Medicine 2020, 2 (12) , 2670-2683. https://doi.org/10.1007/s42399-020-00634-0
- Trevor R. F. Smith, Ami Patel, Stephanie Ramos, Dustin Elwood, Xizhou Zhu, Jian Yan, Ebony N. Gary, Susanne N. Walker, Katherine Schultheis, Mansi Purwar, Ziyang Xu, Jewell Walters, Pratik Bhojnagarwala, Maria Yang, Neethu Chokkalingam, Patrick Pezzoli, Elizabeth Parzych, Emma L. Reuschel, Arthur Doan, Nicholas Tursi, Miguel Vasquez, Jihae Choi, Edgar Tello-Ruiz, Igor Maricic, Mamadou A. Bah, Yuanhan Wu, Dinah Amante, Daniel H. Park, Yaya Dia, Ali Raza Ali, Faraz I. Zaidi, Alison Generotti, Kevin Y. Kim, Timothy A. Herring, Sophia Reeder, Viviane M. Andrade, Karen Buttigieg, Gan Zhao, Jiun-Ming Wu, Dan Li, Linlin Bao, Jiangning Liu, Wei Deng, Chuan Qin, Ami Shah Brown, Makan Khoshnejad, Nianshuang Wang, Jacqueline Chu, Daniel Wrapp, Jason S. McLellan, Kar Muthumani, Bin Wang, Miles W. Carroll, J. Joseph Kim, Jean Boyer, Daniel W. Kulp, Laurent M. P. F. Humeau, David B. Weiner, Kate E. Broderick. Immunogenicity of a DNA vaccine candidate for COVID-19. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16505-0
- Feng-Yee Chang, Hsiang-Cheng Chen, Pei-Jer Chen, Mei-Shang Ho, Shie-Liang Hsieh, Jung-Chung Lin, Fu-Tong Liu, Huey-Kang Sytwu. Immunologic aspects of characteristics, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). Journal of Biomedical Science 2020, 27 (1) https://doi.org/10.1186/s12929-020-00663-w
- Stephen N. Crooke, Inna G. Ovsyannikova, Richard B. Kennedy, Gregory A. Poland. Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-70864-8
- Kumaragurubaran Karthik, Tuticorin Maragatham Alagesan Senthilkumar, Shanmugasundaram Udhayavel, Gopal Dhinakar Raj. Role of antibody-dependent enhancement (ADE) in the virulence of SARS-CoV-2 and its mitigation strategies for the development of vaccines and immunotherapies to counter COVID-19. Human Vaccines & Immunotherapeutics 2020, 16 (12) , 3055-3060. https://doi.org/10.1080/21645515.2020.1796425
- Yetian Dong, Tong Dai, Yujun Wei, Long Zhang, Min Zheng, Fangfang Zhou. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduction and Targeted Therapy 2020, 5 (1) https://doi.org/10.1038/s41392-020-00352-y
- Zhihui Liang, Haoru Zhu, Xin Wang, Bo Jing, Zifan Li, Xinyu Xia, Hongwu Sun, Yun Yang, Weiting Zhang, Li Shi, Hao Zeng, Bingbing Sun. Adjuvants for Coronavirus Vaccines. Frontiers in Immunology 2020, 11 https://doi.org/10.3389/fimmu.2020.589833
- Tulika Singh, Sarah M Heston, Stephanie N Langel, Maria Blasi, Jillian H Hurst, Genevieve G Fouda, Matthew S Kelly, Sallie R Permar. Lessons From COVID-19 in Children: Key Hypotheses to Guide Preventative and Therapeutic Strategies. Clinical Infectious Diseases 2020, 71 (8) , 2006-2013. https://doi.org/10.1093/cid/ciaa547
- Lydia Su Yin Wong, Evelyn Xiu Ling Loo, Alicia Yi Hui Kang, Hui Xing Lau, Paul Anantharajah Tambyah, Elizabeth Huiwen Tham. Age-Related Differences in Immunological Responses to SARS-CoV-2. The Journal of Allergy and Clinical Immunology: In Practice 2020, 8 (10) , 3251-3258. https://doi.org/10.1016/j.jaip.2020.08.026
- Nina Marí G.P. de Queiroz, Fabio V. Marinho, Marcelo A. Chagas, Luciana C.C. Leite, E. Jane Homan, Mariana T.Q. de Magalhães, Sergio C. Oliveira. Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes and Infection 2020, 22 (10) , 515-524. https://doi.org/10.1016/j.micinf.2020.09.004
- Alex Renn, Ying Fu, Xin Hu, Matthew D. Hall, Anton Simeonov. Fruitful Neutralizing Antibody Pipeline Brings Hope To Defeat SARS-Cov-2. Trends in Pharmacological Sciences 2020, 41 (11) , 815-829. https://doi.org/10.1016/j.tips.2020.07.004
- Wen-Hsiang Chen, Xinrong Tao, Anurodh Shankar Agrawal, Abdullah Algaissi, Bi-Hung Peng, Jeroen Pollet, Ulrich Strych, Maria Elena Bottazzi, Peter J. Hotez, Sara Lustigman, Lanying Du, Shibo Jiang, Chien-Te K. Tseng. Yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1) formulated with aluminum hydroxide induces protective immunity and reduces immune enhancement. Vaccine 2020, 38 (47) , 7533-7541. https://doi.org/10.1016/j.vaccine.2020.09.061
- Jieqi Wen, Yifan Cheng, Rongsong Ling, Yarong Dai, Boxuan Huang, Wenjie Huang, Siyan Zhang, Yizhou Jiang. Antibody-dependent enhancement of coronavirus. International Journal of Infectious Diseases 2020, 100 , 483-489. https://doi.org/10.1016/j.ijid.2020.09.015
- T. A. Zaichuk, Y. D. Nechipurenko, A. A. Adzhubey, S. B. Onikienko, V. A. Chereshnev, S. S. Zainutdinov, G. V. Kochneva, S. V. Netesov, O. V. Matveeva. The Challenges of Vaccine Development against Betacoronaviruses: Antibody Dependent Enhancement and Sendai Virus as a Possible Vaccine Vector. Molecular Biology 2020, 54 (6) , 812-826. https://doi.org/10.1134/S0026893320060151
- Florian Krammer. SARS-CoV-2 vaccines in development. Nature 2020, 586 (7830) , 516-527. https://doi.org/10.1038/s41586-020-2798-3
- Fred D. Mast, Arti T. Navare, Almer M. van der Sloot, Jasmin Coulombe-Huntington, Michael P. Rout, Nitin S. Baliga, Alexis Kaushansky, Brian T. Chait, Alan Aderem, Charles M. Rice, Andrej Sali, Mike Tyers, John D. Aitchison. Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. Journal of Cell Biology 2020, 219 (10) https://doi.org/10.1083/jcb.202006159
- Henna Iqbal. The importance of cell-mediated immunity in COVID-19 – An opinion. Medical Hypotheses 2020, 143 , 110152. https://doi.org/10.1016/j.mehy.2020.110152
- Petrungaro Annamaria, Quartarone Eugenia, Sciarrone Paolo. Anti-SARS-CoV-2 hyperimmune plasma workflow. Transfusion and Apheresis Science 2020, 59 (5) , 102850. https://doi.org/10.1016/j.transci.2020.102850
- Marcin F. Osuchowski, Federico Aletti, Jean-Marc Cavaillon, Stefanie B. Flohé, Evangelos J. Giamarellos-Bourboulis, Markus Huber-Lang, Borna Relja, Tomasz Skirecki, Andrea Szabó, Marc Maegele. SARS-CoV-2/COVID-19: Evolving Reality, Global Response, Knowledge Gaps, and Opportunities. Shock 2020, 54 (4) , 416-437. https://doi.org/10.1097/SHK.0000000000001565
- Chandrika S. Bhat, Latika Gupta, S. Balasubramanian, Surjit Singh, Athimalaipet V. Ramanan. Hyperinflammatory Syndrome in Children Associated With COVID-19: Need for Awareness. Indian Pediatrics 2020, 57 (10) , 929-935. https://doi.org/10.1007/s13312-020-1997-1
- Stylianos Bournazos, Aaron Gupta, Jeffrey V. Ravetch. The role of IgG Fc receptors in antibody-dependent enhancement. Nature Reviews Immunology 2020, 20 (10) , 633-643. https://doi.org/10.1038/s41577-020-00410-0
- Wen Shi Lee, Adam K. Wheatley, Stephen J. Kent, Brandon J. DeKosky. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nature Microbiology 2020, 5 (10) , 1185-1191. https://doi.org/10.1038/s41564-020-00789-5
- Gregory A. Poland, Inna G. Ovsyannikova, Stephen N. Crooke, Richard B. Kennedy. SARS-CoV-2 Vaccine Development: Current Status. Mayo Clinic Proceedings 2020, 95 (10) , 2172-2188. https://doi.org/10.1016/j.mayocp.2020.07.021
- Yuxin Chen, Xin Tong, Yang Li, Bin Gu, Jiawei Yan, Yong Liu, Han Shen, Rui Huang, Chao Wu, . A comprehensive, longitudinal analysis of humoral responses specific to four recombinant antigens of SARS-CoV-2 in severe and non-severe COVID-19 patients. PLOS Pathogens 2020, 16 (9) , e1008796. https://doi.org/10.1371/journal.ppat.1008796
- Lluc Farrera-Soler, Jean-Pierre Daguer, Sofia Barluenga, Oscar Vadas, Patrick Cohen, Sabrina Pagano, Sabine Yerly, Laurent Kaiser, Nicolas Vuilleumier, Nicolas Winssinger, . Identification of immunodominant linear epitopes from SARS-CoV-2 patient plasma. PLOS ONE 2020, 15 (9) , e0238089. https://doi.org/10.1371/journal.pone.0238089
- David Requena, Aldhair Médico, Ruy D. Chacón, Manuel Ramírez, Obert Marín-Sánchez. Identification of Novel Candidate Epitopes on SARS-CoV-2 Proteins for South America: A Review of HLA Frequencies by Country. Frontiers in Immunology 2020, 11 https://doi.org/10.3389/fimmu.2020.02008
- Maria Trovato, Rossella Sartorius, Luciana D’Apice, Roberta Manco, Piergiuseppe De Berardinis. Viral Emerging Diseases: Challenges in Developing Vaccination Strategies. Frontiers in Immunology 2020, 11 https://doi.org/10.3389/fimmu.2020.02130
- Noah T. Hutchinson, Andrew Steelman, Jeffrey A. Woods. Behavioral strategies to prevent and mitigate COVID-19 infection. Sports Medicine and Health Science 2020, 2 (3) , 115-125. https://doi.org/10.1016/j.smhs.2020.09.001
- Puja Adhikari, Neng Li, Matthew Shin, Nicole F. Steinmetz, Reidun Twarock, Rudolf Podgornik, Wai-Yim Ching. Intra- and intermolecular atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: implication for ACE2 receptor binding. Physical Chemistry Chemical Physics 2020, 22 (33) , 18272-18283. https://doi.org/10.1039/D0CP03145C
- Emilia Sinderewicz, Wioleta Czelejewska, Katarzyna Jezierska-Wozniak, Joanna Staszkiewicz-Chodor, Wojciech Maksymowicz. Immune Response to COVID-19: Can We Benefit from the SARS-CoV and MERS-CoV Pandemic Experience?. Pathogens 2020, 9 (9) , 739. https://doi.org/10.3390/pathogens9090739
- David M. Morens, Anthony S. Fauci. Emerging Pandemic Diseases: How We Got to COVID-19. Cell 2020, 182 (5) , 1077-1092. https://doi.org/10.1016/j.cell.2020.08.021
- Clarisa B. Palatnik-de-Sousa. What Would Jenner and Pasteur Have Done About COVID-19 Coronavirus? The Urges of a Vaccinologist. Frontiers in Immunology 2020, 11 https://doi.org/10.3389/fimmu.2020.02173
- Lauren A. Callender, Michelle Curran, Stephanie M. Bates, Maelle Mairesse, Julia Weigandt, Catherine J. Betts. The Impact of Pre-existing Comorbidities and Therapeutic Interventions on COVID-19. Frontiers in Immunology 2020, 11 https://doi.org/10.3389/fimmu.2020.01991
- Hsin-I Shih, Chi-Jung Wu, Yi-Fang Tu, Chia-Yu Chi. Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines. Biomedical Journal 2020, 43 (4) , 341-354. https://doi.org/10.1016/j.bj.2020.05.021
- Mayya Sedova, Lukasz Jaroszewski, Arghavan Alisoltani, Adam Godzik, . Coronavirus3D: 3D structural visualization of COVID-19 genomic divergence. Bioinformatics 2020, 36 (15) , 4360-4362. https://doi.org/10.1093/bioinformatics/btaa550
- Manuel Becerra‐Flores, Timothy Cardozo. SARS‐CoV‐2 viral spike G614 mutation exhibits higher case fatality rate. International Journal of Clinical Practice 2020, 74 (8) https://doi.org/10.1111/ijcp.13525
- Pierre Tiberghien, Xavier Lamballerie, Pascal Morel, Pierre Gallian, Karine Lacombe, Yazdan Yazdanpanah. Collecting and evaluating convalescent plasma for COVID‐19 treatment: why and how?. Vox Sanguinis 2020, 115 (6) , 488-494. https://doi.org/10.1111/vox.12926
- Bao-zhong Zhang, Ye-fan Hu, Lin-lei Chen, Thomas Yau, Yi-gang Tong, Jing-chu Hu, Jian-piao Cai, Kwok-Hung Chan, Ying Dou, Jian Deng, Xiao-lei Wang, Ivan Fan-Ngai Hung, Kelvin Kai-Wang To, Kwok Yung Yuen, Jian-Dong Huang. Mining of epitopes on spike protein of SARS-CoV-2 from COVID-19 patients. Cell Research 2020, 30 (8) , 702-704. https://doi.org/10.1038/s41422-020-0366-x
- Matthew D. Shin, Sourabh Shukla, Young Hun Chung, Veronique Beiss, Soo Khim Chan, Oscar A. Ortega-Rivera, David M. Wirth, Angela Chen, Markus Sack, Jonathan K. Pokorski, Nicole F. Steinmetz. COVID-19 vaccine development and a potential nanomaterial path forward. Nature Nanotechnology 2020, 15 (8) , 646-655. https://doi.org/10.1038/s41565-020-0737-y
- Jasmine Shirazi, Michael J. Donzanti, Katherine M. Nelson, Ryan Zurakowski, Catherine A. Fromen, Jason P. Gleghorn. Significant Unresolved Questions and Opportunities for Bioengineering in Understanding and Treating COVID-19 Disease Progression. Cellular and Molecular Bioengineering 2020, 13 (4) , 259-284. https://doi.org/10.1007/s12195-020-00637-w
- Bette Korber, Will M. Fischer, Sandrasegaram Gnanakaran, Hyejin Yoon, James Theiler, Werner Abfalterer, Nick Hengartner, Elena E. Giorgi, Tanmoy Bhattacharya, Brian Foley, Kathryn M. Hastie, Matthew D. Parker, David G. Partridge, Cariad M. Evans, Timothy M. Freeman, Thushan I. de Silva, Charlene McDanal, Lautaro G. Perez, Haili Tang, Alex Moon-Walker, Sean P. Whelan, Celia C. LaBranche, Erica O. Saphire, David C. Montefiori, Adrienne Angyal, Rebecca L. Brown, Laura Carrilero, Luke R. Green, Danielle C. Groves, Katie J. Johnson, Alexander J. Keeley, Benjamin B. Lindsey, Paul J. Parsons, Mohammad Raza, Sarah Rowland-Jones, Nikki Smith, Rachel M. Tucker, Dennis Wang, Matthew D. Wyles. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 2020, 182 (4) , 812-827.e19. https://doi.org/10.1016/j.cell.2020.06.043
- Hui Wang, Yuntao Zhang, Baoying Huang, Wei Deng, Yaru Quan, Wenling Wang, Wenbo Xu, Yuxiu Zhao, Na Li, Jin Zhang, Hongyang Liang, Linlin Bao, Yanfeng Xu, Ling Ding, Weimin Zhou, Hong Gao, Jiangning Liu, Peihua Niu, Li Zhao, Wei Zhen, Hui Fu, Shouzhi Yu, Zhengli Zhang, Guangxue Xu, Changgui Li, Zhiyong Lou, Miao Xu, Chuan Qin, Guizhen Wu, George Fu Gao, Wenjie Tan, Xiaoming Yang. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell 2020, 182 (3) , 713-721.e9. https://doi.org/10.1016/j.cell.2020.06.008
- Gaurav Das, Surojit Ghosh, Shubham Garg, Satyajit Ghosh, Aniket Jana, Ramkamal Samat, Nabanita Mukherjee, Rajsekhar Roy, Surajit Ghosh. An overview of key potential therapeutic strategies for combat in the COVID-19 battle. RSC Advances 2020, 10 (47) , 28243-28266. https://doi.org/10.1039/D0RA05434H
- Chunting He, Ming Qin, Xun Sun. Highly pathogenic coronaviruses: thrusting vaccine development in the spotlight. Acta Pharmaceutica Sinica B 2020, 10 (7) , 1175-1191. https://doi.org/10.1016/j.apsb.2020.05.009
- Joachim Denner. SARS-CoV-2 and enhancing antibodies. Journal of Clinical Virology 2020, 128 , 104424. https://doi.org/10.1016/j.jcv.2020.104424
- Cuiqing Ma, Shan Su, Jiachao Wang, Lin Wei, Lanying Du, Shibo Jiang. From SARS-CoV to SARS-CoV-2: safety and broad-spectrum are important for coronavirus vaccine development. Microbes and Infection 2020, 22 (6-7) , 245-253. https://doi.org/10.1016/j.micinf.2020.05.004
- Martyn A. French, Yuben Moodley. The role of SARS‐CoV ‐2 antibodies in COVID ‐19: Healing in most, harm at times. Respirology 2020, 25 (7) , 680-682. https://doi.org/10.1111/resp.13852
- Nikolai Eroshenko, Taylor Gill, Marianna K. Keaveney, George M. Church, Jose M. Trevejo, Hannu Rajaniemi. Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures. Nature Biotechnology 2020, 38 (7) , 789-791. https://doi.org/10.1038/s41587-020-0577-1
- Yu. D. Nechipurenko, A. A. Anashkina, O. V. Matveeva. Change of Antigenic Determinants of SARS-CoV-2 Virus S-Protein as a Possible Cause of Antibody-Dependent Enhancement of Virus Infection and Cytokine Storm. Biophysics 2020, 65 (4) , 703-709. https://doi.org/10.1134/S0006350920040119
- PJ Klasse, John P Moore. Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization. eLife 2020, 9 https://doi.org/10.7554/eLife.57877
- Walter Fierz, Brigitte Walz. Antibody Dependent Enhancement Due to Original Antigenic Sin and the Development of SARS. Frontiers in Immunology 2020, 11 https://doi.org/10.3389/fimmu.2020.01120
- Sergio Rosales-Mendoza. Will plant-made biopharmaceuticals play a role in the fight against COVID-19?. Expert Opinion on Biological Therapy 2020, 20 (6) , 545-548. https://doi.org/10.1080/14712598.2020.1752177
- Feng-Cai Zhu, Yu-Hua Li, Xu-Hua Guan, Li-Hua Hou, Wen-Juan Wang, Jing-Xin Li, Shi-Po Wu, Bu-Sen Wang, Zhao Wang, Lei Wang, Si-Yue Jia, Hu-Dachuan Jiang, Ling Wang, Tao Jiang, Yi Hu, Jin-Bo Gou, Sha-Bei Xu, Jun-Jie Xu, Xue-Wen Wang, Wei Wang, Wei Chen. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. The Lancet 2020, 395 (10240) , 1845-1854. https://doi.org/10.1016/S0140-6736(20)31208-3
- Paul-Henri Lambert, Donna M. Ambrosino, Svein R. Andersen, Ralph S. Baric, Steven B. Black, Robert T. Chen, Cornelia L. Dekker, Arnaud M. Didierlaurent, Barney S. Graham, Samantha D. Martin, Deborah C. Molrine, Stanley Perlman, Philip A. Picard-Fraser, Andrew J. Pollard, Chuan Qin, Kanta Subbarao, Jakob P. Cramer. Consensus summary report for CEPI/BC March 12–13, 2020 meeting: Assessment of risk of disease enhancement with COVID-19 vaccines. Vaccine 2020, 38 (31) , 4783-4791. https://doi.org/10.1016/j.vaccine.2020.05.064
- Mark Yarmarkovich, John M. Warrington, Alvin Farrel, John M. Maris. Identification of SARS-CoV-2 Vaccine Epitopes Predicted to Induce Long-Term Population-Scale Immunity. Cell Reports Medicine 2020, 1 (3) , 100036. https://doi.org/10.1016/j.xcrm.2020.100036
- Hongpeng Jia, Min Wu. Sustained research fund and dedicated research center to prepare for the next pandemic. Precision Clinical Medicine 2020, 3 (2) , 94-96. https://doi.org/10.1093/pcmedi/pbaa012
- Alejandro Llanes, Carlos M. Restrepo, Zuleima Caballero, Sreekumari Rajeev, Melissa A. Kennedy, Ricardo Lleonart. Betacoronavirus Genomes: How Genomic Information has been Used to Deal with Past Outbreaks and the COVID-19 Pandemic. International Journal of Molecular Sciences 2020, 21 (12) , 4546. https://doi.org/10.3390/ijms21124546
- Jinyong Zhang, Hao Zeng, Jiang Gu, Haibo Li, Lixin Zheng, Quanming Zou. Progress and Prospects on Vaccine Development against SARS-CoV-2. Vaccines 2020, 8 (2) , 153. https://doi.org/10.3390/vaccines8020153
- Sergio Rosales-Mendoza, Verónica A. Márquez-Escobar, Omar González-Ortega, Ricardo Nieto-Gómez, Jaime I. Arévalo-Villalobos. What Does Plant-Based Vaccine Technology Offer to the Fight against COVID-19?. Vaccines 2020, 8 (2) , 183. https://doi.org/10.3390/vaccines8020183
- Sara Lega, Samuele Naviglio, Stefano Volpi, Alberto Tommasini. Recent Insight into SARS-CoV2 Immunopathology and Rationale for Potential Treatment and Preventive Strategies in COVID-19. Vaccines 2020, 8 (2) , 224. https://doi.org/10.3390/vaccines8020224
- Cristiano Conte, Francesco Sogni, Paola Affanni, Licia Veronesi, Alberto Argentiero, Susanna Esposito. Vaccines against Coronaviruses: The State of the Art. Vaccines 2020, 8 (2) , 309. https://doi.org/10.3390/vaccines8020309
- Akiko Iwasaki, Yexin Yang. The potential danger of suboptimal antibody responses in COVID-19. Nature Reviews Immunology 2020, 20 (6) , 339-341. https://doi.org/10.1038/s41577-020-0321-6
- Takahiko Koyama, Dilhan Weeraratne, Jane L. Snowdon, Laxmi Parida. Emergence of Drift Variants That May Affect COVID-19 Vaccine Development and Antibody Treatment. Pathogens 2020, 9 (5) , 324. https://doi.org/10.3390/pathogens9050324
- Alba Grifoni, John Sidney, Yun Zhang, Richard H. Scheuermann, Bjoern Peters, Alessandro Sette. A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2. Cell Host & Microbe 2020, 27 (4) , 671-680.e2. https://doi.org/10.1016/j.chom.2020.03.002
- Fatima Amanat, Florian Krammer. SARS-CoV-2 Vaccines: Status Report. Immunity 2020, 52 (4) , 583-589. https://doi.org/10.1016/j.immuni.2020.03.007
- Ruta Kulkarni. Antibody-Dependent Enhancement of Viral Infections. 2020,,, 9-41. https://doi.org/10.1007/978-981-15-1045-8_2
- Henok Andualem, Mulugeta Kiros, Sisay Getu, Wasihun Hailemichael. <p>Immunoglobulin G2 Antibody as a Potential Target for COVID-19 Vaccine</p>. ImmunoTargets and Therapy 2020, Volume 9 , 143-149. https://doi.org/10.2147/ITT.S274746
- Maria Infantino, Arianna Damiani, Francesca Li Gobbi, Valentina Grossi, Barbara Lari, Donatella Macchia, Patrizia Casprini, Francesca Veneziani, Danilo Villalta, Nicola Bizzaro, Piero Cappelletti, Martina Fabris, Luca Quartuccio, Maurizio Benucci, Mariangela Manfredi. Vantaggi, limiti e prospettive dei test sierologici nell'infezione da SARS-CoV-2 (COVID-19). La Rivista Italiana della Medicina di Laboratorio 2020, 16 (1) https://doi.org/10.23736/S1825-859X.20.00054-7
- Jun Yong Choi. Convalescent Plasma Therapy for Coronavirus Disease 2019. Infection & Chemotherapy 2020, 52 (3) , 307. https://doi.org/10.3947/ic.2020.52.3.307
- Jean Pierre Schatzmann Peron, Helder Nakaya. Susceptibility of the Elderly to SARS-CoV-2 Infection: ACE-2 Overexpression, Shedding, and Antibody-dependent Enhancement (ADE). Clinics 2020, 75 https://doi.org/10.6061/clinics/2020/e1912
- Li Liu, Qiang Wei, Qingqing Lin, Jun Fang, Haibo Wang, Hauyee Kwok, Hangying Tang, Kenji Nishiura, Jie Peng, Zhiwu Tan, Tongjin Wu, Ka-Wai Cheung, Kwok-Hung Chan, Xavier Alvarez, Chuan Qin, Andrew Lackner, Stanley Perlman, Kwok-Yung Yuen, Zhiwei Chen. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 2019, 4 (4) https://doi.org/10.1172/jci.insight.123158
- Zhiqi Song, Yanfeng Xu, Linlin Bao, Ling Zhang, Pin Yu, Yajin Qu, Hua Zhu, Wenjie Zhao, Yunlin Han, Chuan Qin. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses 2019, 11 (1) , 59. https://doi.org/10.3390/v11010059
- Yusen Zhou, Shibo Jiang, Lanying Du. Prospects for a MERS-CoV spike vaccine. Expert Review of Vaccines 2018, 17 (8) , 677-686. https://doi.org/10.1080/14760584.2018.1506702
Source : https://pubs.acs.org/doi/10.1021/acsinfecdis.6b00006#